
Technical University Ingolstadt
Faculty of Electrical Engineering and Computer Science

BACHELOR THESIS

Security Evaluation for the Real-time
Operating System VxWorks 7 for Avionic

Systems

by

Kevin Klaus Gomez Buquerin

Faculty of Electrical Engineering and Computer Science

Supervisors of the bachelor thesis: Prof. Dr.-Ing. Hans-Joachim Hof
Prof. Dr.-Ing. Ernst-Heinrich Göldner
Dr. Andreas Schweiger

Begin date: October 09, 2017
Submission date: January 11, 2018
Study programm: Aviation and Automotive Computer Engineering

Ingolstadt, May 3, 2018

Declaration

I hereby declare that this thesis is my own work, that I have not presented
it elsewhere for examination purposes and that I have not used any sources
or aids other than those stated. I have marked verbatim and indirect quo-
tations as such.

Ingolstadt,

First Name, Surname

2

Kevin Klaus, Gomez Buquerin

11. January 2018

Abstract

In previous years, the threat landscape for avionic systems, especially with
a military background, became more dangerous. Additional, the complexity
for aircraft systems is increasing as well as the number of threats, attacks,
and vulnerabilities against computer systems. From this it follows, core
units such as real-time operating systems need to be secure to provide shelter
against possible cyber security threats.

This thesis discusses and tests avionic relevant categories separated into
common threats, attacks, and vulnerabilities for the real-time operating sys-
tem VxWorks 7. The security of the RTOS is evaluated on a simulated
target using varying security configurations of the real-time operating sys-
tem. Possible security technologies and mechanisms provided by VxWorks
are viewed and evaluated, regarding their reaction against threats, attacks,
and vulnerabilities.

Issues appeared with basic attacks and vulnerabilities such as bu↵er
overflows or string vulnerabilities, where negative impact on the system is
noticeable. Good security practices are observed in security areas such as
cryptography and privilege management.

The study reveals security issues as well as good protective technologies
and mechanisms for the real-time operating system VxWorks 7 in the area
of avionic systems.

Furthermore, additional security technologies and mechanism, which can
provide further protection against common attacks, threats, and vulnerabil-
ities, are introduced.

3

Acknowledgements

I want to thank Prof. Dr.-Ing. Hans-Joachim Hof for the incredible and
enriching talks about this topic, the support during challenging tasks, and
the extensive mentoring.

Furthermore, I want to thank Dr. Andreas Schweiger from Airbus De-
fence and Space for the amazingly good conversations and discussions about
this thesis as well as the granted freedom to structure and approach this
topic.

Special thanks to Stefan Harwarth and Rainhard Kain from Wind River
for making it possible to use the products in my thesis for educational pur-
poses.

Thank you to my family and my girlfriend for supporting me throughout
my bachelor.

4

Glossary

Attack Vector Used path by an attacker to gain access to a com-
puter system.

Brute-force Attack An attacker attempts as many requests (e.g. pass-
word tries) as possible. The better the password,
the longer the brute-force takes.

Bu↵er Overflow Overwrite of data, which lies beyond the intended
bu↵er size.

Bu↵er Underflow Overwrite of data, which underflows the intended
bu↵er size.

Code Injection Take advantage of a vulnerability, which grants the
ability to introduce source code into an application.

Data Leakage Unintentional lose and leakage of data within a
computer system.

Denial of Service Make a computer system unavailable for a certain
amount of time. Causes a downtime of the system.

Eavesdropping Listening to a conversation without alerting the
communicating entities.

Exploit An application, which takes advantage of a vulner-
ability within a computer system to obtain
malicious intentions.

Malware Malicious software with the goal to perform harm-
ful actions.

5

Man-in-the-middle An attacker is able to position himself between two
entities to gather and modify data, which is trans-
mitted between both.

Social Engineering Forcing an expected reaction by an other individual
using targeted manipulation.

SQL Injection Cause an unintended SQL execution using crafted
SQL queries.

Trojan An unnoticed application within a computer system,
which gathers information about the target system.

Virus Malicious software, which tries to replicate itself
and spread even more.

Worm Used to spread malicious code from computer to
computer, for example over the network.

Abbreviations

API Application Programming Interface
ARM Instruction set architecture for processors
ASLR Address Space Layout Randomization
C Programming language C defined in ISO/IEC 9899:2011 [1]
CLI Command Line Interface
CPU Central Processing Unit
CVE Common Vulnerabilities and Exposures
C++ Programming language C++ defined in ISO/IEC 14882:2014 [2]
DAL Development Assurance Level
DoS Denial of Service
I/O Input/Output
IP Internet Protocol
OS Operating System
QSP Wind Rivers Quick-Start Platform
RTOS Real-time Operating System
VIP VxWorks Image Project
VSB VxWorks Source Build Projects

7

List of Figures

1 Concept for the Future Aircraft Systems 13

2 Viewed Security Areas . 15
3 Vulnerability, Threat and Attack 17
4 Wind River’s Simics . 20

5 Security Evaluation Approach 23

6 Workbench Format String Vulnerability Warning 29

7 Simulation Setup . 40
8 VxWorks 7 Kernel Image . 45
9 Simics Control QSP PowerPC Board 48
10 QSP PowerPC Board Architecture 48

11 VxWorks 7 Login Policies . 50
12 VxWorks 7 Password Policies 51
13 Initial VxWorks 7 User vxworks 52
14 Size of the string ”A” on the VxWorks 7 machine 57
15 Bu↵er Overflow Test – 44 character copy 58
16 Bu↵er Overflow Test – 45 character copy 59
17 Bu↵er Overflow Test – File system ejected 60
18 Format String Test – Stack Leak 62
19 Stack to the defined time stamp 63
20 Format String Test – Leak local data 64
21 Memory Management Unit Output 65
22 Generation of a 2048 bit RSA Private Key 68
23 VxWorks Cryptography Configuration for VSB 69
24 Symbol Table System Function 72

8

List of Tables

6.1 Security Evaluation for VxWorks Version 7 39

7.1 Final Security Evaluation Matrix 76

9

Contents

1 Introduction 12

2 Background 14
2.1 Relevant Information Security Aspects 14
2.2 Threat, Vulnerability, and Attack 16
2.3 Real-time Operating System VxWorks 18
2.4 Workbench and Simics . 19

3 Related Work 21

4 Evaluation Approach 22

5 Analysis 24
5.1 Developers security awareness 24
5.2 Secure Software Development in C and C++ 25

5.2.1 Strings and User Input 27
5.2.2 Pointer Subterfuge . 29
5.2.3 Integers . 30
5.2.4 Formatted Output (Format Strings) 32
5.2.5 File I/O . 34

5.3 Specific Characteristics for Aircraft Systems 34
5.4 Score Definition and Evaluation Structure 35

6 Design and Implementation 36
6.1 Representation Method . 36
6.2 Relevant Threats, Vulnerabilities, and Attacks 37
6.3 Infrastructure . 40
6.4 Workbench configuration . 41
6.5 Simics configuration . 47

10

7 Evaluation 49
7.1 E1 – Improper Authentication (CWE-287) 49
7.2 E2 – Privilege Management (CWE-264/266/269) 53
7.3 E3 – Malware Protection . 53
7.4 E4 – Bu↵er Overflow (CWE-121/122/123) 55
7.5 E5 – String Vulnerabilities (CWE-133/134) 60
7.6 E6 – Secure Cryptography Algorithm 67
7.7 E7 – Storage of Sensitive Data 69
7.8 E8 – Command Injection (CWE-77/78) 71
7.9 E9 – Integrity check of external Software 72
7.10 Summary . 74

8 Conclusion and Outlook 77

11 of 87

Chapter 1

Introduction

According to the Bundesamt für Sicherheit in der Informationstechnik (BSI)
of Germany, the total number of critical software vulnerabilities in common
software products1 increased and partly doubled from Q2/15 - Q1/16 to
Q2/16 - Q1/17 [3].

This increase is also visible in operating systems (OS). Due to the ar-
chitectural position, which is between the application/user layer and the
hardware layer, control over the OS can lead to full control over the com-
puter system. From 2016 to 2017, the number of known vulnerabilities for
the major operating system vendors (Apple, Microsoft, and Linux) has in-
creased. The number for Apple’s Mac OS X has risen from 215 up to 236
[4], for Microsoft’s Windows 10 from 172 to 255 [5], and for the community
developed Linux Kernel from 217 to 407 [6]. This exhibits a clear trend for
weaknesses in operating systems.

Real-time operatings systems (RTOS) are a core unit of common avionic
systems and connect the hardware layer with the application layer. State
of the art avionic systems became more complex over the past years. The
percent of functionality provided by software has increased from 8% in 1960
up to 80% in 2000 for U.S. fighter jets [7]. New mechanisms and technologies
expand the scope of possible attacks and increases the number of attack
vectors2.

This increasing complexity becomes clearly visible in the concept of fu-
ture aircraft systems as illustrated in Figure 1. The leading and manned
aircraft communicates with the ground station, satellites, and other aircraft

1Adobe Reader, Adobe Flash, Apple OS X, Google Chrome, Linux Kernel, Mozilla
Firefox, Oracle Java/JRE, Microsoft Windows, Microsoft Internet Explorer and Microsoft

12

CHAPTER 1. INTRODUCTION

Figure 1: Concept for the Future Aircraft Systems

or drones. As a consequence, the connectivity of the overall system increases
dramatically, which results in more possible attack vectors.

Avionic systems are not always secure. The security researcher Hugo
Teso was able to exploit vulnerabilities in the flight-control-system as well
as the communication system for state of the art aircraft systems [8]. This
gave him access to valuable mission data and other resources. In his released
work he identifies clear security issues in avionic communication systems.

This leads to the question if state of the art RTOS provide a su�cient
security foundation for avionic systems.

The thesis is structured as follows: Chapter 2 gives a short overview
of the essentials to understand the argumentation and implications for the
rest of the thesis. After the fundamentals follows a list of related work,
which already discusses security for VxWorks in Chapter 3. Chapter 4
illustrates the approach, which is chosen to evaluate VxWorks 7 in the field
of security. Following from this chapter, is the analysis of the research
question and how it is going to be answered in Chapter 5. The chosen
design and implementation to perform a security evaluation of VxWorks 7
is shown in Chapter 6. The security evaluation itself, where all relevant
topics are assessed, is located in Chapter 7. Chapter 8 summarizes the
results and gives and outlook for further work.

O�ce
2Path which an attacker takes to gain access to a computer system.

13 of 87

Chapter 2

Background

To understand the main body of the thesis, prerequisite and contextual in-
formation is necessary. This chapter o↵ers an overview of several important
topics, which are relevant in this bachelor thesis.

2.1 Relevant Information Security Aspects

The U.S. code law defines information security in the following way: ”The
term “information security” means protecting information and information
systems from unauthorized access, use, disclosure, disruption, modification,
or destruction.” [9]. The definition displays, that information security is a
broad area in computer science. To protect computer systems for the enu-
merated terms, protective security mechanisms are necessary.

Several vulnerabilities, attacks, technologies, and mechanisms are viewed
in this thesis as depicted in Figure 2.

14

CHAPTER 2. BACKGROUND

F
ig
u
re

2:
V
ie
w
ed

S
ec
u
ri
ty

A
re
as

15 of 87

CHAPTER 2. BACKGROUND

The displayed scope shows the most relevant areas for avionic systems:

• Organisational

! Internal – Threats from internal entities including personnel, which
can be prevented by humans trust, clearances, training, and a
su�cient security awareness.

! External – Threats from external entities including o↵ the shelf
hardware and software. Hardware and software certifications as
well as training and security awareness can harden a system in
reference to this topic.

• Software based

! Malware – Increasing complexity and internet of things (IoT)
similarities in avionic systems.

! Authentication – Secure access control between aircraft, ground
station, satellites, and other entities. This topic is separated into
creditable management and the issue with default user accounts.

! Information management – Secure storage and handling of sen-
sitive data with topics such as the storage of passwords or keys,
the used protocols and methods, which can be attacked by infor-
mation gathering and eavesdropping.

! Development – Secure software development for aerospace soft-
ware. Development can be separated into external input, which
can lead to string vulnerabilities, command injections, and input
size management, which can further be subdivided into bu↵er
overflows and memory corruption.

2.2 Threat, Vulnerability, and Attack

The three terms threat, vulnerability, and attack are mentioned multiple
times in the course of this thesis. Figure 3 displays the dependence between
the terms.

16 of 87

CHAPTER 2. BACKGROUND

Figure 3: Vulnerability, Threat and Attack

A threat is a potential security flaw, which a↵ects the integrity of a
computer system. It can result in the exploitation of a vulnerability (if one
is present) within the system [10]. Eckert presents five major threats to
computer systems [11]:

• Act of nature beyond control, which is not viewed in this thesis because
of the small impact a developer has regarding this topic. Furthermore,
the RTOS relies on properly function hardware, which could not be
given, if the nature would influence the hardware significantly.

• Carelessness is the result of poor written software and covered in se-
curity mistakes by programmers (Chapter 5).

• Intention is present, if the developer is not trustworthy. Furthermore,
attackers have the intention to target the system using vulnerabilities
and attacks. This topic is covered in developers security awareness
(Chapter 5.1) as well as in the security evaluation (Chapter 7).

• Technical failure is not considered in this thesis because a developer
has no impact on this topic and the reaction of hardware failures of
the overall avionic system is not viewed.

• Organisational shortcomings are covered in developers security aware-
ness (Chapter 5.1) and is the result of poor assignment of security

17 of 87

CHAPTER 2. BACKGROUND

clearances.

Vulnerabilities reduce the overall security of a computer system. Ex-
amples are Bu↵er Overflows, Injection Vulnerabilities including Code and
Command Injections, as well as Data Leakage Vulnerabilities, which are all
explained in the glossary. If an attacker is able to detect a vulnerability, he
is usually able to attack the system.

An attack against a computer system is mostly the result of a vulnerabil-
ity. Typically an attack occurs in the form of an exploit. Exploits can lead
to the gain of unintended privileges and informations3, compromise of the
system, the altering of data, or a crash. Examples are Man-in-the-middle
attacks, Eavesdropping, SQL Injection Attacks, and Denial of Service (DoS)
Attacks. All attacks are explained in the glossary.

2.3 Real-time Operating System VxWorks

An aircraft is limited in space to carry hardware devices such as computers.
This leads in the need of rather small hardware elements. Those computers
are called Electronic Control Units (ECU). An ECU is an embedded device
with limited resources. Operating systems for desktop computers such as
Windows, Linux, or macOS are not able to perform smoothly with limited
resources or fulfil the real-time requirements. They are not usable on such a
device due to the constant display of user interfaces, frequent appropriation
of multiple networking or connectivity technologies, and similar. Instead,
an ECU uses a real-time operating system such as VxWorks.

Kevin D. Morgan characterizes RTOS with the following attributes: de-
terminism4, responsiveness5, user control6, reliability7, and fail-safe opera-
tion8 [12][13].

3Such as user credentials, military mission data, and similar.
4The performance of fixed operations at predetermined times, the predictability for

results, and the characteristic that the outcome is repeatable.
5The time how long it takes for the system to acknowledge an interrupt.
6The determination and monitoring for users permissions over tasks, objects and re-

sources.
7The need to respond to events in real time and the characteristic that all services are

provided as required. If this is not guaranteed, it might result in damage of the system
and environment.

8The fail of the system leads to preservation of as much data and services as possible.

18 of 87

CHAPTER 2. BACKGROUND

VxWorks is a RTOS developed by Wind River9 [14]. The RTOS mainly
supports C, C++, and Java as programming languages for software develop-
ment. This thesis discusses VxWorks on the newest Version 7. The reason
to choose VxWorks 7 over the already used, certified, and aerospace spe-
cific VxWorks 65310 is to select a RTOS with dedicated security features to
protect future avionic systems against security threats.

2.4 Workbench and Simics

Wind River’s Workbench Version 4 is an application, which grants the abil-
ity to deploy VxWorks, Wind River Linux, and the Diab Compiler11. The
application uses the integrated development enviroment (IDE) ”Eclipse”
and provides several components including support for File Transfer Pro-
tocol (FTP) and Trivial File Transfer Protocol (TFTP) servers, configu-
ration/build tools, debug and analysis tools, language support for the pro-
gramming language Ada12 (while using the AdaCore [17], which allows com-
pilation of Ada source code on a VxWorks 7 system), and more. The Work-
bench configuration is presented in Section 6.4. [18]

Wind River’s Simics is used to simulate multiple target systems, which
are often used by aerospace companies for development purposes. As shown
in Figure 4, the application consists of two windows: Simics Control to se-
lect targets and start or pause the simulation, and the Simics Command
Line Interface (CLI) to manage the simulated boards including Ethernet
connections and debug functionalities. If a target is selected, the applica-
tion creates a Serial Console window, which enables interaction with the
simulated board running the chosen OS. Figure 4 displays the Serial Con-
sole13 window simulating VxWorks 7 on a Quick-Start Platform (QSP) with
PowerPC architecture. Details to the Simics configuration and the QSP are
presented in Chapter 6.5.

9Wind River is specialized in developing software for embedded devices. VxWorks is
one of their core products. With over 1.5 billion deployed devices VxWorks is the world’s
leading real-time operating system.

10RTOS with an ARINC 653 architecture, which is an internationally accepted speci-
fication for aerospace systems [15].

11Wind River’s own compiler for safty critical systems.
12Objected-oriented programming language defined in ISO/IEC 8652:2012 [16].
13Allows interaction with the simulated operating system (here VxWorks 7).

19 of 87

CHAPTER 2. BACKGROUND

Figure 4: Wind River’s Simics

20 of 87

Chapter 3

Related Work

Since VxWorks is one of the most popular RTOS [19], security analysis and
penetration tests has already been done by security researchers.

Aditya K. Sood was concerned with VxWorks 5.x and found several
security vulnerabilities [20]. The researcher acknowledged that the stack
protection of VxWorks was not stringent enough, since the default stack
guard was only 4 kilobyte (KB) big14. Additionally, the password encryption
algorithm of the viewed VxWorks version was not secure enough. Encrypted
passwords were brute-force-able.

Furthermore, the software company Rapid7 looked at VxWorks 6.x and
found weak password hashing within the RTOS [21]. Passwords are used
to enable a login, if remote access to the device is needed. This access is
provided using the File Transfer Protocol (FTP) or Telnet. The researchers
were able to dump memory using the hacking tool Metasploit15 and read
passwords in clear-text representation. The passwords were stored in hashed
form within the RTOS. However, unencrypted parts of the firmware image
contained clear-text passwords. The researcher was able to login using the
captured passwords.

Both researchers show clear security issues within VxWorks. However,
the research was performed on older versions of the real-time operating
system. No publicly available research for VxWorks 7 is accessible, which
leads to the need of a security evaluation of the latest version. This thesis
discusses and evaluates the security for the current version 7.

14Chapter 6.4 gives further explanation regarding kernel hardening features and the
stack guard.

15An application, which provides several security vulnerabilities to test the robustness
of a computer system

21

Chapter 4

Evaluation Approach

Figure 5 illustrates the methodology to perform the evaluation of the real-
time operating system VxWorks 7.

The security awareness of software developers is introduced in Chapter
5.1 followed by the presentation of secure software development aspects in
Chapter 5.2. Chapter 5.3 points out the avionic characteristics in order to
define avionic relevant security categories, which are introduced in Chapter
6. Those are separated into multiple threats, vulnerabilities, and attacks,
which are presented in Chapter 6.2. The mentioned threats, vulnerabilities,
and attacks are tested on the simulated VxWorks 7 target as well as evalu-
ated using vulnerable code or manual audits in Chapter 7. Afterwards, the
reaction of VxWorks regarding the tested points is monitored and analysed.
If the RTOS is able to prevent the attack from happening or prevent further
damaged, a positive16 score is given. This score itself is separated into two
appropriate sub items17. On the other hand, if VxWorks 7 is not able to
protect the system from damage, a negative18 score is given. The corre-
sponding scores are listed into the evaluation matrix Table 7.1 in Chapter
7.10.

16”Mechanism exists”
17”Full protection” and ”Only extenuates”
18”Mechanism does not exist”

22

CHAPTER 4. EVALUATION APPROACH

Figure 5: Security Evaluation Approach

23 of 87

Chapter 5

Analysis

To answer the question, if the real-time operating system VxWorks 7 of-
fers protective technologies and methods to be usable in avionic systems, a
further analysis of this topic is necessary. This chapter displays the areas
for secure software development, which is necessary to protect the RTOS
from unwanted security incidents as well as the characteristics, which are
important for aircraft systems. Afterwards, an assessment of the evaluation
parameters and the structure to evaluate VxWorks 7 is presented.

5.1 Developers security awareness

To maintain secure software development and protect the system in the first
place, programmers need to be trustworthy to ensure security in the work
place as well as the private life. Security awareness is important for software
development departments, since programmers are able to add back doors or
intentionally make software prone to vulnerabilities. This can be extremely
valuable for an attacker. An assailant is able to gain this information by
paying, blackmailing the individual, or through social engineering. [22]

Due to the amount of sensitive information and importance to provide
secure software, military aircraft software development centres have a strong
security infrastructure. This is realized using clearances for the personnel.
Several talks with o�cials and background checks of the person are necessary
to get a clearance. Furthermore, employees are only able to gain informa-
tion they need to know. Clearances ensure organisational security within
the software development department for an aircraft. However, a clearance
does not prevent programmers from making software security errors.

24

CHAPTER 5. ANALYSIS

The University of North Carolina at Charlotte (UNC) published a paper
[23], which discusses the reasons for programmers making security errors.
The researchers from the UNC interviewed multiple experienced software
developers. Many of the developers had a basic understanding of software
security, while di↵erences appeared in performing practices to ensure se-
curity. The developers display the problem of deadlines, available project
budget, requirements set by the customers, and the lack of knowledge.

These interviews show a clear lack of security awareness and knowledge
of experienced software developers as well as issues in development depart-
ments.

5.2 Secure Software Development in C and C++

Software written in VxWorks’ supported languages19 needs to provide a suf-
ficient software security foundation. These fundamentals result in secure
software, which is lesser prone to common vulnerabilities and robust against
various software conditions and inputs.

This thesis discusses the programming languages C and C++, since
JSF++ [24], which is based on C and C++ is commonly used in U.S. mil-
itary aricraft software development. Java is not used in military aircraft
because the Java byte code is executed in the Java Virtual Machine (JVM).
This results in an increase of the execution time. Furthermore, Java is not
a hardware-near programming language like C, C++, or Ada. Hence, in-
fluence on hardware devices takes further steps and more time to achieve.
There is a possibility to execute Java byte code directly and not using the
JVM. Version 6 of the GNU Compiler Collection (GCC) compiler, called
GNU Compiler for Java (GCJ) supports this feature [25]. However, this
technology is not used in common aircraft software. The programming lan-
guage Ada [16], which is common in military aircraft, is by default20 not
supported in VxWorks 7 and therefore not considered in this thesis.

There is a broad range of security mistakes programmers can do, which
might lead to vulnerabilities and consequential exploits or attacks. If there is
no focus on security during software development, the chance of applications

19C, C++, and Java.
20With the use of a technolgoy called AdaCore [17] Ada can be used in VxWorks 7.

Although, this technology is not used due to licensing problems.

25 of 87

CHAPTER 5. ANALYSIS

containing vulnerabilities and errors is higher than with a focus on security
[26].

The following areas of the programming languages C and C++ com-
monly lead to security vulnerabilities. They are based on Robert C. Sea-
cord’s book ”Secure Coding in C and C++” [27]:

• Strings and User Input

• Pointer Subterfuge

• Dynamic Memory Management

• Integer Security

• Formatted Output

• Concurrency

• File I/O

Dynamic memory management and concurrency are both left out. The
two areas are usually not relevant in current aircraft software development
and not that much used compared to the other displayed areas.

Due to security and safety reasons, dynamic memory management is cur-
rently not allowed and not used in aircraft software development. Resources
are statically allocated to minimize calculation time. If the memory is al-
located dynamically, the processing time is higher, and it is harder to fulfil
real-time requirements in an aircraft. Furthermore, if allocated memory is
not freed correctly, the memory could be insu�cient. Other programs would
be incapable in execution because the memory is not su�cient enough.

Concurrency defines the computation of multiple executions simultane-
ously using common resources. Since current aircraft does not yet support
multi core processors as well as shared memory over several processors and
processes, concurrency is not relevant for avionic systems. However, aircraft
software development uses multiple tasks to introduce parallelism in avionic
systems but without using shared memory. As a result, concurrency is not
viewed in this thesis.

Once software developers consider the demonstrated mitigation tech-
niques presented in Robert C. Seacord’s mentioned book, the errors and
vulnerabilities are less likely to occur. In addition, constant source code
audit and software updates prevent vulnerabilities to become acquainted in
the future.

26 of 87

CHAPTER 5. ANALYSIS

5.2.1 Strings and User Input

External data including user input can be unsafe. Further, it can be costly
to verify the source of external data. Therefore, it is safer to assume that
all external data is unsafe and not trustworthy in the first place. Security
programming errors with strings and user input can lead to the following
vulnerabilities and attacks:

Stack Smashing: The OS saves local data and return addresses on the
stack21. If source code writes past the intended declared size, it is called
a stack smashing attack [28]. Such an attack can be the result of a bu↵er
overflow vulnerability.

Bu↵er Overflow: Eckert defines a bu↵er overflow attack as a program-
ming error, which results in the overflow of a variable with fixed length22

[11]. Therefore, more data than intended is written to a variable without
checking if the size of the variable exceeds. Usually a bu↵er overflow vul-
nerability leads to the control of one or more pointers such as the program
instruction pointer. Those can be used to change the control flow of the
program.

Code Execution: The attacker has the ability to execute custom code.
This is extremely powerful since the attacker can choose the code he or she
wants to execute. Code execution attacks can lead to the gain of root privi-
leges, Denial of Service (DoS), ability to read or write data, and more. This
attack is usually the result of a bu↵er overflow or command injection.

Arc Injections: An arc injection attack is also known as ”return-to-libc”.
For the programming language C, Libc provides the standard library for
Linux [29]. During ”return-to-libc” attacks, control is transferred to code
that already exists. For example in libraries or application programming
interfaces (API) [27]. This is useful, if security mechanisms like the non-
executable stack bit23 (NX) is enabled, because the attacker can locate the
instruction he or she wants to execute on the heap instead of using the
stack24.

21This is a reservered amount of memory to store this data.
22A bu↵er can be an allocated array in C (char arr[64])
23Prevents instructions from being executed on the stack.
24Usually the stack is easier to access and to use compared to the heap.

27 of 87

CHAPTER 5. ANALYSIS

Return Oriented Programming (ROP): If an attacker executes existing
code from the program for unintended reasons [30], it is called ROP attack.
Since software contains assembler code there are a lot existing code snippets.
Those code snippets can be used to execute specific instructions, which can
lead to dangerous program execution including shellcode25.

There are multiple mitigation techniques to weaken or even prevent the
mentioned vulnerabilities and errors to occur during software development,
while using strings and user input. In order to provide decent security for
C or C++ software, while using strings and handling user input, the use of
secure functions comes in handy. Secure functions in C can be strncpy s()

or strncat s(). Those functions are elements of the default library of the
C programming language and provide an additional parameter which de-
termines the size of the destination bu↵er. For example: strncpy s(dest,

dest size, src, count) where dest is a pointer to the array to copy to,
dest size the maximum size of the destination bu↵er, src is a pointer to
the array to copy from, and count the maximum number of characters which
should be copied.

The development environment can o↵er help for software developer to
write secure software. Wind River’s Workbench provides warnings or er-
rors for the developed project as displayed in Figure 6. If some of the
source code files contain a format string vulnerability, a compiler warning
is displayed during the project build process. The Workbench checks for
code segments where no explicit format string is in use. For example in
printf(user input), where the user input directly gets printed without
checking its content or size.

25Usually, shellcode is byte code with the purpose of executing a shell. Nowadays it is
used in more ways inlcuding breaking out of a chroot shell, creating a file, and proxying
system calls. [31]

28 of 87

CHAPTER 5. ANALYSIS

Figure 6: Workbench Format String Vulnerability Warning

5.2.2 Pointer Subterfuge

The process during a bu↵er overflow, which results in an overwrite of a
pointer, is called pointer subterfuge. This overwrite is either a pointer to an
object26 (pointer-to-object) or a pointer to a function27 (pointer-to-function)
[27]. The overwrite of pointers can lead to code flow changes. If the exe-
cution order of instructions changes or even the attacker controls this alter-
ations, it can cause massive damage and might result in security issues.

Attackers are mostly able to read pointers in clear text. Usually in hex-
adecimal representation such as ”0x23b1e990”. Therefore, an attacker is
able to overwrite pointer addresses since those are legible. The encryption
of pointers during compilation would complicate the ability to use pointer to
redirect code execution. Merely the encrypted representation of a pointer is
visible if this mechanism is used. Secure encryption algorithms and robust

26Points to assigned memory including the heap. This memory is allocated during the
run time of the software with C functions such as malloc() or calloc().

27Refers to a function which is located in a memory segment such as the stack.

29 of 87

CHAPTER 5. ANALYSIS

key management can provide durability against pointer subterfuge vulnera-
bilities.

Wind River’s Workbench does not provide security mechanisms or tech-
nologies to prevent any kind of pointer subterfuge attcks.

5.2.3 Integers

Integers in C and C++ have a fixed size and therefore boundary conditions.
If an integer value exceed its size, it can result in an unexpected value.

Conversion and truncation errors can occur if the C/C++ developer does
not validate integer sizes. Both errors are a result of incorrect or inadequate
integer allocation.

Conversion errors occur, if an integer value is only checked one way. The
following code displays such an error:

1 void foo (i n t var1)
2 {
3 i f (var1 <= MAX SIZE)
4 // cont inue proce s s ing , e . g . a l l o c a t e memory us ing var1
5 e l s e
6 // handle e r r o r to a l l o c a t e too much memory
7 }

The intention of the function foo is to check if the variable var1 exceeds
the maximum intended size (MAX SIZE). If the integer value is higher as
requested, error handling takes place. The security issue here is the insuf-
ficient boundary check. The if-clause only handles errors for values higher
than the maximum intended size (var1 <= MAX SIZE), but not values which
are negative. The query if(var1 <= MAX SIZE) is for negative values true.

Truncation errors arise, if integer values are too high:

1 void foo (i n t var1 , i n t var2)
2 {
3 i f (var1 <= MAX SIZE & var1 >= 0 & var2 <= MAX SIZE & var2 >=

0)
4 i n t r e s = var1 + var2 ;
5 // cont inue proce s s ing , e . g . a l l o c a t e memory us ing r e s
6 e l s e
7 // handle e r r o r to a l l o c a t e too much memory
8 }

In this example the developer checks each variable of the function foo for
the highest and lowest boundaries. However the res value will be truncated

30 of 87

CHAPTER 5. ANALYSIS

if the sum of var1 and var2 is too high. The maximum value to fit into a
32-bit singed integer is 2147483648 [32]. The following code snippet shows
a integer truncation on a 32-bit UNIX machine:

1 #inc lude<s t d i o . h>
2

3 i n t main ()
4 {
5 i n t var1 = 2147483647;
6 i n t var2 = 1 ;
7 p r i n t f (” Var iab le var1 : %d\n” , var1) ;
8 p r i n t f (” Var iab le var2 : %d\n” , var2) ;
9

10 i n t r e s = 0 ;
11 r e s = var1 + var2 ;
12 p r i n t f (” Var iab le r e s : %d\n” , r e s) ;
13 re turn 0 ;
14 }

If this C code gets compiled, without compiler optimisations, the following
overflow is visible:

1 admin@lab : ˜ $ gcc �O0 in t o v e r f l ow . c �o i n t o v e r f l ow
2 admin@lab : ˜ $. / i n t o v e r f l ow
3 Var iab le var1 : 2147483647
4 Var iab le var2 : 1
5 Var iab le r e s : �2147483648

The intended value of the res variable is 2147483648 and not -2147483648.

In secure software development it is important to select the correct data
type (e.g. int, float, short) and the properly abstract data type (e.g.
unsigned, signed). The data type needs to be able to handle all possible
intended values and does not allow unwanted merits to occur. For example:
A C developer should not pick the data type short for values, which can
contain a higher number than 32,767. A data type including int or double
is advisable. Furthermore, there is no reason to pick the C data type int

to store, for example, the height over ground, since this value can not be
negative. In this example the developer should use an unsigned int to
store the value. Before the call of any function, the range of the input
parameters should be validated. Every side for the boundaries should be
checked. The developer needs to ensure that only intended values are passed
to the function. For example:

1 i n t addNumbers (i n t var1 , i n t var2)
2 {
3 i n t r e s = 0 ;

31 of 87

CHAPTER 5. ANALYSIS

4 r e s = var1 + var2 ;
5 re turn r e s ;
6 }

Another mitigation strategy is arbitrary-precision arithmetic. In the
course of this, a new integer type can be introduced, which is bound to the
memory of the host system. This implies that an integer value can not be
bigger than the disposable space of the computer system. GMP28 provides a
framework for the C programming language. This framework o↵ers integer
functions to initialize integer objects. The function void mpz init2(mpz t

x, mp bitcnt t n), which initializes the integer x with space for n-bit num-
bers [33]. Hence, the framework o↵ers a robust security implementation for
integers due to limited space.

Wind River’s Workbench does not support the developer to prevent
security mistakes relating integers.

5.2.4 Formatted Output (Format Strings)

Format strings are the input variables for formatted output functions such
as printf(), sprintf(), or scanf() within the C programming language.
Depending on the conversion specifier29 of the format string the input vari-
able is presented in a di↵erent way. If the inputs are not checked for integrity,
an attack is able to leak data or even write data to the stack.

Format strings can lead to a bu↵er overflows. For example:

1 char buf [6 4] ;
2 s p r i n t f (buf , ”Some text %s ” , var1) ;

If var1 is bigger than 52 bytes30, the character bu↵er buf will overflow.
Morover, stack content can be leaked, if formatted output functions are

not used properly. With C functions such as printf(var1), stack data can
be displayed, if the variable contains the format string %p. This will result
in the print of a pointer on the stack.

Furthermore, if the variable var1 is something like ABCD%n, the attacker
is able to write to a specific address31 on the stack. This can result in control
flow changes.

28The GNU Multiple Precision Arithmetic Library https://gmplib.org/.
29For example s for a character string, d for an integer, or p for a pointer.
3064 bytes - 12 characters of the ”Some text %s” string
31Here, 0x41424344 which is the hexadecimal representation of ABCD

32 of 87

CHAPTER 5. ANALYSIS

An integrity check of the input for formatted output functions provide
a su�cient security aspect. Black- and White-Listing can be helpful in this
case. The surest implementation to examine the input variable is white list-
ing. That implies to block every input and only allow certain inputs. Black-
listing is when every input is accepted and a few are specifically blocked.

A black list can be implemented like this:

1 char ⇤ b l a c k l i s t = ”%!@#$%ˆ&⇤() + [] { } \ | ” ;
2 f o r (i n t i = 0 ; b l a c k l i s t [i] != ’\0 ’ ; i++)
3 {
4 i f (s t r s t r (var1 , b l a c k l i s t [i]) == NULL)
5 // f u r t h e r execut ion
6 e l s e
7 break ;
8 }

The character pointer blacklist contains multiple character, which should
not be element of var1. If var1 contains any of the blacklist characters,
the program stops due to the break in line 7.

One possible white list implementation in C could look like this:

1 char ⇤ wh i t e l i s t = ” abcdefghi jk lmnopqrstuvwxyz ”
2 f o r (i n t i = 0 ; wh i t e l i s t [i] != ’\0 ’ ; i++)
3 {
4 i f (s t r s t r (var1 , w h i t e l i s t [i]) != NULL)
5 // f u r t h e r execut ion
6 e l s e
7 break ;
8 }

This white list only allows lower case characters. If var1 contains an ele-
ment of the character pointer whitelist, the program continues execution.
Otherwise, the program will stop execution, due to the break instruction in
line 7.

The formatted output functions themselves provide a security mecha-
nism. Developers can limit the number of bytes written by using the format
string like sprintf(buf, "Some text %.52s", var1). The use of %.52s
results in a limit of 52 bytes, which will be written to the buf variable.

In addition, compiler modifications provide features to make the use
of format string functions safer. Format guards can be implemented to
dynamically check output functions. The number of provided format strings
will be counted and compared with the intended number. For example: if
printf("Some text: %s", var1) is used, the intended number of format

33 of 87

CHAPTER 5. ANALYSIS

strings is 1 (%s). Therefore, if var1 contains more strings like %x or %p, the
format guard will notice this and reject the function call. This can be done
manually too, if the developer includes check for every format string input.
Such a manual verification is presented in the following code snipped:

1 i f (s t r s t r (var1 , ”%”) == NULL)
2 // f u r t h e r execut ion
3 e l s e
4 break ;

The if statement will check the variable var1 for the character %. This
example can be refined and extended to provide more protections against
malicious format string function inputs.

As mentioned in Section 5.2.1 and displayed in Figure 6, Wind River’s
Workbench provides Format String vulnerability warnings or errors.

5.2.5 File I/O

The read and write to files is a popular attack vector for hackers. Files can
contain valuable information including passwords and system information.
Hence, during C/C++ development the focus on file permissions and priv-
ileges is important. The introduction of privilege management policies is
essential for developers. The UNIX file-system introduces such policies by
determining files with tree states: read, write, and executable. The dispen-
sation of the least privileges for each user and each file can prevent security
issues from occurring.

VxWorks supports file system management and privileges similar to
UNIX. That implies that file system objects can be flagged as readable,
writeable and executable. Further examination to VxWorks 7 privilege man-
agement is introduced in Section 7.2.

5.3 Specific Characteristics for Aircraft Systems

To just pick common vulnerabilities is not su�cient enough because air-
craft systems bring specific characteristics. Those limit the ability of the
computer system and consequential the vulnerabilities, threats, and attacks
which occur or happen. Avionic software is subject to restrictions and reg-
ulations including the aviation standard DO-178C [34]. Therefore, tech-
nologies such as dynamic memory management or shared memory is not

34 of 87

CHAPTER 5. ANALYSIS

applicable. On the other hand, technologies for instance authentication, ac-
cess control, cryptography, or data protection is more important compared
to a standard desktop system. From this it follows, to select avionic specific
threats, vulnerabilities, and attacks to evaluate the security of the real-time
operating system VxWorks 7.

5.4 Score Definition and Evaluation Structure

The three scores32 are selected due to VxWorks’ 7 reaction to vulnerable pro-
grams and audits. The vulnerable programs are well-known code snippets
executing predefined and existing functions to force reactions such as bu↵er
overflows or vulnerable writes to memory sections. The audits amount to
code reviews and examinations of provided technologies, which are known
to harden the system such as code signing or malware defences.

If the RTOS provides mechanisms or technologies, which prevent the
tested threats, attacks, or vulnerabilities from happening, the score is put
within the ”mechanism exists” column. Furthermore, analysis such as tests
or comparisons with other (real-time) operating systems are performed to
determine if the provided mechanism is su�cient enough to grant protec-
tion. The result of this examination resolves to a mark in the corresponding
column ”full protection” or ”only extenuates”. If VxWorks does not of-
fer any mechanism to prevent security incidents, the mark is placed in the
”mechanism does not exist” column. Additionally, existing technologies are
described, which could be used in the appropriate context.

32”Mechanism exists with full protection”, ”mechanism exists but only extenuates”, and
”mechanism does not exit”.

35 of 87

Chapter 6

Design and Implementation

After a further analysis of the research question as well as the presentation
of security awareness and secure programming, the design and implementa-
tion, the used course of action and components to evaluate the security of
VxWorks 7 is presented in this chapter.

6.1 Representation Method

To clearly present multiple vulnerabilities, threats, and attacks and verify
if VxWorks is vulnerable, the chosen representation method is a matrix as
displayed in Table 6.1 on page 39.

The rows will be sorted in di↵erent categories of threats, vulnerabilities,
and attacks. The selected categories are based on a paper by Afzali [35].
This publication describes a model based approach to categorize multiple
security criteria and corresponding mechanisms in a hierarchical structure.
Most of the presented classes (categories) for operating system security are
usable for the security evaluation for VxWorks, while categories like logging
and auditing, protection of meta data, and secure backup/restore are not
suitable for a real-time operating system for avionic systems. The columns
will depict, if VxWorks is prone to the vulnerabilities, threats, and attacks.
A mark (”X ”) will be placed in the ”Mechanism exists” or ”Mechanism
does not exist” cells. A tag in the ”Mechanism exists” column determines,
if VxWorks on Version 7 uses a security mechanism, which does not allow
the viewed vulnerability to be exploited. A mark in the ”Mechanism does
not exist” column represents, if the real-time operating system does not
support any security mechanism and the flaw can result in a security issue
for an aircraft system. The ”Evaluation”-column describes further explana-

36

CHAPTER 6. DESIGN AND IMPLEMENTATION

tions. Those cells set a parameter (”E1”, ”E2”, ”E3”, and so forth). These
parameters will result in further explanations regarding the weak point and
which mechanism is used or could be used by VxWorks to provide a security
mechanism for the viewed criteria.

This method results in a clear depiction of weaknesses for operating
systems and VxWorks 7 liability regarding them.

6.2 Relevant Threats, Vulnerabilities, and Attacks

To pick relevant vulnerabilities for a real-time operating system like Vx-
Works it is important to choose only weak spots, which are usable for the
viewed area, here avionic systems. The picked vulnerabilities are the most
common vulnerabilities from reliable and community-developed sources Com-
mon Vulnerabilities and Exposures (CVE) database [36] and Common Weak-
ness Enumeration (CWE) book [37]). Both sources provide a extensive
collection on threats, vulnerabilities, and attacks against vendor products,
including operating systems as well as real-time operating systems. Fur-
thermore, the picked vulnerabilities are the most relevant security issues for
avionic software due to the following reasons:

As displayed in Figure 1, future aircraft systems introduce an exten-
sive amount of communication between several entities including aircraft,
ground stations, satellites, and drones. Hence, reliable authentication mech-
anisms are necessary to provide secure communication. CWE-287 describes
improper authentication as an attack where the attacker pretends to be
someone else with other privileges.

Military aircraft systems work with highly sensitive and secret data.
This data should be protected from unintentionally access because access to
such information can result in military mission relevant disadvantages and
danger to the aircraft and environment. Privilege management is described
in CWE-264/266/269 and shows the management of assignments, which
cover access control.

Malware is an increasing threat to embeeded systems. The BSI shows
a clear increase of existing malware from 100 million in 2012 to approxi-
mate 620 million in 2017 [3]. Malware can infect IoT and embedded devices
including aircraft systems. Even though these systems are usually not con-
nected to the internet, Malware can gain access using other ways such as the
transfer via USB during the read-out of mission data or even over satellite
or ground station connections.

Bu↵er overflows are common vulnerabilities in current applications, which

37 of 87

CHAPTER 6. DESIGN AND IMPLEMENTATION

includes avionic software. Available complicated and resource expensive pro-
tection frameworks are not adaptable in an aircraft because of the limited
processing power. Since resources are limited within aircraft systems, bu↵ers
are usually very small and overflows are likely to occur if the software is not
developed with a focus on security.

CWE-121/122/123 define string vulnerabilities. Those are security issues
regarding user/external input and format functions are likely to occur in
software. The vulnerabilities can occur in aircraft software as well, since
strings are usual data types.

Data within an aircraft system is highly sensitive and secret. This in-
formation should be treated with special attention. If data is transferred
in clear-text representation, information can be leaked, which can result in
military disadvantages. RTOS can provide secure cryptography algorithms
in order to grant the ability to decrypt and encrypt data for secure transfer.

Following from encryption and decryption of sensitive information, im-
proper storage of information including cryptographic keys can lead to secu-
rity issues. Separated storage locations and similar technologies can impede
the leakage of sensitive data and make the aircraft system more secure.

The possibility to execute system commands is a powerful ability for
an attacker. Command injections base on those functions and are defined
within CWE-77/78. These vulnerabilities grant an attacker full control over
a system. Hence, avionic systems should be protected against unintentional
execution of commands. The RTOS can provide such protection using se-
curity technologies and mechanisms such as user input control.

Software updates and modifications are common within avionic aircraft
systems. Each client has di↵erent requirements to the military aircraft.
Therefore, the software needs to be changed regularly. The integrity of new
software units should be ensured. The RTOS can provide check mechanisms
including code signing to protect the aircraft from malicious software.

38 of 87

CHAPTER 6. DESIGN AND IMPLEMENTATION

C
a
te
g
o
ry

T
h
re

a
t,

V
u
ln
e
ra

b
il
it
y

o
r
A
tt
a
ck

M
e
ch

a
n
is
m

e
x
is
ts

M
e
ch

a
n
is
m

d
o
e
s
n
o
t
e
x
is
t

E
v
a
lu
a
ti
o
n

N
am

e
F
u
ll

p
ro
te
ct
io
n

O
n
ly

ex
te
nu

at
es

A
u
th
en
ti
ca
ti
on

Im
p
ro
p
er

A
u
th
en
ti
ca
ti
on

(C
W

E
-2
87

)

A
cc
es
s
C
on

tr
ol

P
ri
vi
le
ge

M
an

ag
em

en
t

(C
W

E
-2
64

/2
66

/2
69

)
D
at
a
P
ro
te
ct
io
n

M
al
w
ar
e
P
ro
te
ct
io
n

R
es
ou

rc
es

m
an

ag
em

en
t

B
u
↵
er

O
ve
rfl
ow

(C
W

E
-1
21

/1
22

/1
23

)
S
tr
in
g
vu

ln
er
ab

il
it
ie
s

(C
W

E
-1
33

/1
34

)

C
ry
p
to
gr
ap

hy
S
ec
u
re

cr
yp

to
gr
ap

hy
al
go

ri
th
m

S
to
ra
ge

of
se
n
si
ti
ve

in
fo
rm

at
io
n

O
th
er

C
om

m
an

d
In
je
ct
io
n

(C
W

E
-7
7/

78
)

In
te
gr
it
y
ch
ec
k
of

ex
te
rn
al

so
ft
w
ar
e

T
ab

le
6.
1:

S
ec
u
ri
ty

E
va
lu
at
io
n
fo
r
V
xW

or
ks

V
er
si
on

7

39 of 87

CHAPTER 6. DESIGN AND IMPLEMENTATION

6.3 Infrastructure

Wind River provides tools to realise the creation of kernel images, virtual-
ization, and simulation of the real-time operating system VxWorks 7 as well
as the virtualization and simulation of several targets. The used set-up is
displayed in Figure 7.

Figure 7: Simulation Setup

A Ubuntu 64-bit virtual machine (VM) is applied to run all necessary
applications. This VM is hosted by the virtualization program Virtual-
Box from Oracle on an macOS33 host system. The Ubuntu machine runs
three applications. Wind River’s Simics (Chapter 2.4), Workbench (Chap-
ter 2.4), and a License Server Manager called LMGRD, which is a daemon

33Apples operating system for Apple computers.

40 of 87

CHAPTER 6. DESIGN AND IMPLEMENTATION

for FLEXnet Licensing and dynamically provides floating and network li-
censes [38]. Three licenses are embedded within the LMGRD server: Simics,
Workbench, and VxWorks 7 license in one combined license file. Every time,
one of the programs verifies a license, they obtain them from the LMGRD
server and check its validity.

All entities grand the ability to simulate VxWorks 7 with multiple con-
figurations or features enabled (see Section 6.4). The hardware boards can
be switched on demand as well as combined and linked together to simulate
a whole system of multiple computers, which interact with each other, sim-
ilar to a real aircraft system. The simulation of whole computer systems is
not part of this thesis, because VxWorks 7 as a part of an avionic system is
considered.

6.4 Workbench configuration

Wind River’s Workbench is used to generate a VxWorks 7 image, which
will then be used to run on a simulated target using Simics, as illustrated in
Figure 7. To generate a VxWorks 7 image, two steps are necessary: First,
a VxWorks Source Build Project (VSB) is created. Second, a VxWorks Im-
age Project (VIP), based on the VSB, is generated. The VIP creates the
needed VxWorks 7 image as a Executable and Linking Format (ELF) 32-bit
PowerPC executable file.

To create an image with all necessary security mechanisms and features
provided by VxWorks 7, a VSB is required. If options are excluded they
are fully deleted from the configuration and not only disabled. The fol-
lowing bullet points displays the VSB options with a listing of the picked
configuration:

• VxWorks Global Configuration Options for BSP qsp ppc – This option
describes basic configuration parameters including the endian configu-
ration34, the compiler version, floating point configuration, and more.
Those settings are left on default since there is no need to change
options for the board support package for the QSP.

• ARCH selection(s) for PPCE6500 – These options allow to edit Pow-
erPC libraries. They are left on default because there is no need to
change these options for the viewed security evaluation.

34Arrangements of bits in a computer system.

41 of 87

CHAPTER 6. DESIGN AND IMPLEMENTATION

• VxWorks Kernel Configuration Options – It contains VxWorks library
configuration flags and options. This can not be edited in the selected
VSB35.

• os – The os-parameter o↵ers operating system specific configurations,
including language, debug options, utilities (JavaScript Object Nota-
tion (JSON) library, VxWorks shell, etc.), firmware options (Advanced
Configuration and Power Interface36 (ACPI) and VxWorks Flattened
Device Tree37 (FDT)), and more. The configurations are left on de-
fault since there is no relevance relating to the tested threats, attacks,
and vulnerabilities.

• rttools – Contains runtime analysis tools to analyse VxWorks 7 dur-
ing processing including additional debug parameter, a target runtime
analysis tool, and similar. The default configuration enables all neces-
sary tools including debug options and the ability to analyse VxWorks
7 during the runtime.

• security – This contains all security relevant configuration options in-
cluding encryption libraries, hash algorithms, encryption APIs, user
management options, and more. Since the VSB configuration does
not result in the creation of the kernel image itself, nearly every op-
tion is enabled within the security configuration to enable them for the
VIP. All networking options like Simple Certificate Enrolment Proto-
col (SCEP), which enables network certificate handling, as well as
options, which are architecture specific38, are not enabled since those
networking technologies are not used within current aircraft systems.

• connectivity – Connection dependent options including Controller Area
Network (CAN) support, Universal Serial Bus (USB) system support,
and similar are included within this parameter. Those configuration
are left on default since no such connection is considered in this thesis.

• storage – Storage configurations like file-system-support, -applications,
and similar are part of this option. All options are left on the default

35It is not clear why it is not editable, since no information is displayed.
36Enable OS-directed motherboard device configuration and power management. [39]
37Copy of a binary blob in the kernel memory space, which describes the hardware

resources of a computer system. [40]
38Options like OP Trusted Execution environment (OP-TEE) can not be implemented

since they require the ARM architecture.

42 of 87

CHAPTER 6. DESIGN AND IMPLEMENTATION

values, which allows the storage of cryptographic keys and user data
used within the security configuration parameters.

• net – All networking options are left on default, which enables all
parameters including Ethernet network device support, IP networking
stack, Simple Network Management Protocol (SNMP), Management
Information Base (MIB) for networking stack, Network Information
Center (NIC), and networking basic library. Real-time network stack is
not enabled since this option is only usable with the ARM architecture.

• ipc – The inter process communication options are left on default.
This allows socket-oriented messaging communication between several
applications in multi-node or multi-OS systems. Those configurations
are not considered in this thesis.

• ui – User interaction options including audio devices, frame bu↵er
interface for pictures, font libraries, image libraries, and more are left
on default. As a consequence, everything is disabled and only event
device support is enabled to manage all input devices and events.

• app – WebCLI and Extensible Markup Language (XML) are part of
this configuration parameter. Both are not necessary for the security
evaluation performed in this thesis.

• vip profiles – VIP profiles can be included by using this parameter.
The VIP configurations are set from the generation of a VIP project.
The parameter is enabled by default but not explicitly used.

• VxWorks User Library Configuration – This configuration parameter
can be used to add user-side libraries and user custom applications. By
default, this option is enabled but no dedicated use of this parameter
during the thesis is done.

The chosen VSB configuration and creation enables the generation of
VxWorks 7 images using a VIP. If options are excluded, they are fully deleted
from the image file and not only disabled. The corresponding configuration
is separated in the following items:

• Application components – Includes parameters such as an application
initialization parameter to add a function, which will be called by start-
up, post-, and pre-kernel initializations, and other start-up facilities.
All options except application initialization are not used since they are
not necessary for a security evaluation.

43 of 87

CHAPTER 6. DESIGN AND IMPLEMENTATION

• C++ components – No C++ components are used in the VIP config-
uration since there is no dedicated C++ software development for the
security evaluation in this thesis.

• Development tools – This options introduces several tools for devel-
opment purposes including the kernel shell, runtime analysis, system
viewer, VxWorks debug library, and more. The options are enabled to
use the necessary debug functionalities:

! Application Mode Agent components – Target Communication
Framework (TCF) based communication system to enable de-
bugging, profiling, and code patching at runtime.

! Downloadable kernel modules compiler support routines – Adds
the ability to use GNU compiler support routines for C code.

! Kernel shell – Enables the kernel shell to interact with VxWorks.

! Kernel-write – Adds the function printf() to the kernel and
symbol table.

! Show routines – Options like Address Space Allocator to display
the address space of a program, routines for the memory to show
memory partitions, the routines for information about symbols
and symbol tables, and more. This parameter allows to display
memory during debugging and testing.

! Loader components – For VxWorks kernel object management
to load libraries and add downloaded objects into the running
target.

! Symbol table components – Adds a data structure, called symbol
table, for compiler options, which is needed to display information
about the compiler and grant the compiler the ability to compile
the programs source code to a binary file e.g. application.

! Memory Error Detection and Reporting – If memory errors occur,
VxWorks 7 will report those errors and display information about
the error.

! VxWorks debug library – To support runtime debugging.

! spy – A utility to measure per-task CPU utilization. This is useful
to measure and notice DoS attacks and if a program is situated
in an endless loop, which can cause a delay in program execution.

! tip serial line connection utility – To manage serial connection
lines e.g. an escape character for the CLI.

44 of 87

CHAPTER 6. DESIGN AND IMPLEMENTATION

• Hardware – The listed hardware components are for example the BSP
configuration variants, device drivers, peripherals, memory, and more.
All options except the bus library system are added, since this feature
is not used in this security evaluation.

• Network components – Implements the ISO/OSI model layers39 [41],
and other network components. All options are added.

• Obsolete components – This parameter can not be edited and added
to the VIP, since it will be removed next release due to a note in the
configuration parameters.

• Operating system – The operating system parameter adds options in-
cluding ANSI C programming language components, I/O systems, the
kernel, a random number generator, and more. All configurations are
added since these parameters are part of this security evaluation.

• Security – Adds components like cipher algorithms, hash algorithms,
OpenSSL, protected storage, kernel hardening features, and user man-
agement. These parameters are enabled to test the corresponding se-
curity mechanisms, which are tested in this thesis.

• Storage – Within the storage parameter a file system to store cryp-
tographic keys and user passwords is added in a read-only memory
(ROM) file system as well as a random-access memory (RAM) disk.

• User interface components – This parameter can not be added since it
is not added within the VSB and therefore the option is not addable
in the VIP.

With all the chosen VIP configuration a VxWorks 7 binary is generated
as shown in Figure 8.

Figure 8: VxWorks 7 Kernel Image

For the evaluation parameter ”Bu↵er Overflow (CWE-121/122/123)”
and ”String vulnerabilities (CWE-133/134)” two di↵erent workbench con-
figuration are selected. One with all kernel hardening features enabled and

39VxWorks 7 uses a custom ISO/OSI model with 5 layers: physical, data link, network,
transport, application

45 of 87

CHAPTER 6. DESIGN AND IMPLEMENTATION

one without any security features. The use of two configurations allows the
distinction of VxWorks 7 with a light-weight and default40 configuration as
well as the RTOS with dedicated security features enabled. The used config-
uration is mentioned for each evaluation parameter if necessary. If options
are excluded, they are fully deleted from the image file and not only disabled.
Kernel hardening features provide the following security mechanisms:

• Guard pages for the interrupt stack – Provide additional memory41 for
the stack, which handles interrupts. Adds the guard to prevent bu↵er
overflows and bu↵er underflows.

• Enable all kernel hardening features – Provides protection to certain
kernel components (text segment write protection, write protection of
the exception vector table, task stack overflow and underflow detec-
tion, non-executable task stacks, non-executable heap and data sec-
tions, NULL pointer dereference detection for kernel tasks).

• Guard pages for kernel task stacks – Adds additional memory42 to
protect the kernel tasks stacks against bu↵er overflows and bu↵er un-
derflows.

• Non-executable memory protection – Provides the characteristic that
only the memory pages containing the .text43 (and .rodata44) ELF
sections will be executable. All other memory pages, e.g. pages con-
taining the .data45 ELF section, task stack, and heaps are marked
non-executable.

• Non executable stacks – Exception and execution stacks for Real-
time Transfer Protocol (RTP) and kernel tasks will be marked non-
executable.

• Write protection for program text – Provides protection against writes
within the .text segment of the program.

• Write protection for the vector table – Provides security against writes
within the vector table46.

40No special security features.
41Size can be chosen by the developer. Default size is 4096 bytes.
42No information by Wind River relating to the size.
43Contains machine instructions.
44Read-only data section.
45Static data for the application including strings and static variables.
46Contains a list of pointers, which contain interrupt information.

46 of 87

CHAPTER 6. DESIGN AND IMPLEMENTATION

6.5 Simics configuration

Common hardware boards used in avionic software development, such as
the P4080DS, support the following flash memory systems as discribed in
Wind River’s the corresponding fact-sheet [42]:

• 128 Mega Byte (MB) Not-Or-(NOR)-flash.

• Three Inter-Integrated Circuit (I2C) controllers supporting Erasable
Programmable Read-Only Memory (EEPROM).

• 16 MB Serial Peripheral Interface Bus (SPI)-based EEPROM memory.

• One Secure Digital (SD) media card slot.

However, each memory system is capable of performing a limited amount
of program and earase cycles. NOR-flash allows 100.000 program/erase
cycles [43]. EEPROM memory is capable of approximalty 106 write-erase
operations [44]. The maximum of possible read and write cycles for SD
media cards depends on the used flash technology. For example, one of the
biggest SD card vendors SanDisk entitle the endurance for their SD cards
with approximalty 100,000 write and erase cycles [45].

The limited number of possible flash cycles results in the di�culty to test
multiple kernel images on a hardware board, since the memory can not be
flashed ad libitum. The change of broken flash memory can be costly. Hence,
the hardware and software virtualization of targets like the mentioned de-
velopment board and VxWorks 7 lead to a solution for this problem.

The picked board to test the security mechanisms and technologies pro-
vided by VxWorks 7, is the Quick-Start Platform (QSP) PowerPC Board.
Figure 9 shows the target selected in the Simics-Control-Window. At this
time, the already mentioned hardware board P4080DS can not be simulated
while running VxWorks 7. Wind River does not provide VxWorks 7 Simics
start-up scripts yet. These scripts are used to select the RTOS kernel image
as well as a Device Tree Blob47 (DTB). Therefore, the scripts are necessary
to simulate the RTOS on the P4080DS.

47Likely and Boyer desribe DTB in [46] as a tree structure, which initialises the hard-
ware configuration including information about the CPUs, memory banks, buses, and
peripherals.

47 of 87

CHAPTER 6. DESIGN AND IMPLEMENTATION

Figure 9: Simics Control QSP PowerPC Board

QSP was introduced by Windriver in 2012. QSP boards do not phys-
ically exist. Its architecture is similar to existing boards. As displayed in
Figure 10, a QSP target supports all necessary units compared to devel-
opment boards like the P4080DS. As well as the P4080DS, a QSP target
supports serial and ethernet connections, an interrupt controller, multiple
CPUs, timers, and more [47]. Hence, the QSP can be used as a replacement
for the P4080DS due to its similarities with the mentioned development
system board. [48]

Figure 10: QSP PowerPC Board Architecture

48 of 87

Chapter 7

Evaluation

After the introduction of a set up, which allows to evaluate the security of
VxWorks 7, the security evaluation can be realized. Each, in Chapter 6,
mentioned threat, vulnerability, and attack is listed in the following sections
and analysed. The sections are structured the following way: First, a repre-
sentation of the problem. Followed by the provided or possible technologies
and mechanisms. Afterwards, the approach to test the relevant parame-
ters and to finish each evaluation parameter, the reaction of VxWorks is
presented. Chapter 7.10 recaps the evaluation results, provides a general
overview, and displays the final matrix (Table 7.1).

7.1 E1 – Improper Authentication (CWE-287)

CWE-287 defines the weakness class Improper Authentication, which dis-
cusses authentication within a computer system. It is introduced in the
architecture, design, and implementation phase. Due to the medium and
high likelihood for an exploit CWE-287 has a high importance. [49]

Common threats regarding authentication are the use of default cre-
dentials, weak passwords and poor login policies. This becomes apparent
in incidents like the Twitter account hack from 2009 [50]. An 18-year-old
hacker was able to hijack multiple Twitter accounts by guessing and brute-
forcing passwords. In this time Twitter did not restrict the number of failed
login requests, which made it brute-force-able. Furthermore, the users were
allowed to use weak passwords like ”happiness”.

To test this parameter, a manual audit is chosen. The basic authentica-

49

CHAPTER 7. EVALUATION

tion schemes and methods are inspected and evaluated.
VxWorks 7 introduces several policies for the login and the passwords

used within the RTOS. By default none of the policies is enabled, which is a
security issues. DO-178C [34] defines no specific security part in the devel-
opment cycle of an aircraft. Although, existing security standards such as
DO-326 [51], DO-355 [52], DO-356 [53], ISO-15408-1 [54], ISO-15408-2 [55],
and ISO-15408-3 [56] examine security. The main focus on this documents is
organisational security as well as basic techniques to ensure security. There
is no specific focus on software security. Therefore, there might not be a fo-
cus on password and login policies for VxWorks 7 during the development.
This can lead to major security issues, if an attacker is able to brute force
or even manually guess credentials.

Furthermore, the developer has the ability to add custom login and pass-
word policies manually/programmatic, which can harden the whole aircraft
system. If avionic system units (e.g. ground stations) or other aircraft need
to authentication themselves to be able to communicate with each other,
trust and policies can harden the process.

As shown in Figure 11, multiple parameters can be set to harden the
login process. Login policies allow to set a maximum number for failed login
attempts. If the maximum number is exceeded, the account is disabled for
X48-minutes.

Figure 11: VxWorks 7 Login Policies

Moreover, several configurations can be set to define the complexity for
passwords as shown in Figure 12. Password policies can be used to force
the user to choose sophisticated and secure passwords. Multiple attributes

48Dependent on the chosen time interval.

50 of 87

CHAPTER 7. EVALUATION

including the minimum number of lower case characters, numbers, special
characters, and upper case characters can be set. Furthermore, the minimum
and maximum password length can be defined.

Figure 12: VxWorks 7 Password Policies

The manual audit revealed that the initial user on a VxWorks 7 machine
is granted administrative privileges [57] and is called vxworks as shown in
Figure 13. The user name and the name of the image are the same. Ad-
ministrative privileges allow the authorized user to gain full control of the
system. The corresponding password is equal to the user name.

51 of 87

CHAPTER 7. EVALUATION

Figure 13: Initial VxWorks 7 User vxworks

Default credentials are an example for bad security awareness. Publicly
available lists [58][59][60] contain a massive amount of default credentials
for applications, including VxWorks. These credentials can be used to gain
unitentional access to information. This becomes apparent in the reserach
of the security website KrebsonSecurity, which reported that the credit re-
porting company Equifax 49 used the username and password combination
admin/admin for their login on a website for employees of an Argentina of-
fice [62]. As a consequence, default credentials should be changed.

From this evaluation it follows that VxWorks 7 o↵ers protection mecha-
nism, but not by default. Therefore, the evaluation parameter is located
within the ”Mechanism exist”-column and ”Only extenuates”-column.

49The servers of Equifax were breached in May 2017, which resulted in the theft of
sensitive private data of 143 million customers [61].

52 of 87

CHAPTER 7. EVALUATION

7.2 E2 – Privilege Management (CWE-264/266/269)

Privileges are necessary to maintain access control within a computer sys-
tem. Access control defines the constraint for entities like users or files to
access other objects. The likelihood of exploit is marked as medium by CWE
[63]. Wrong privilege assessment and management can result in major se-
curity issues.

During this evaluation, manual audits are used. VxWorks 7 introduces
multiple file system formats and storage mediums. As mentioned in Sec-
tion 6.4 the ROM and RAM file system are used in this thesis. By default,
ROM is granted read-only privileges and RAM full50 privileges. A database
containing the di↵erent users is stored within the RAM file system. ROM
contains encryption relevant data including the Key Store. As a conse-
quence, user credentials can only be read. However, sensitive cryptographic
information is not protected by default, which can result in security issues.

The first to login and consequential default user in VxWorks 7 is granted
administrative rights. Hence, privilege management needs to be done by the
developer.

In 1975, Saltier and Schröder defined the concept of least privileges as
follows: Every program and every user of the system should operate using
the least set of privileges necessary to complete the job. [64]. Following this
rule, access control is less prone to attacks and vulnerabilities.

As a result of this, the mark is set within the ”Mechanism exists” and
”Full protection” column. Although, VxWorks 7 allows to create a user
database where users with di↵erent privileges for diverse file systems and
regions can be defined. As a result VxWorks 7 allows to define a more
precise management for access control because users and file systems priv-
ileges can be customized. From this evaluation it follows that VxWorks 7
o↵ers plenty of security mechanism to prevent attacks against the privilege
management.

7.3 E3 – Malware Protection

J. Powers defines malware as malicious code with the goal to compromise
the integrity of a computer system using automated exploitation techniques

50Read, write and execution.

53 of 87

CHAPTER 7. EVALUATION

[65]. Hence, malware exploits a known vulnerability fully automated, which
means, no further analysis by the attacker are necessary for the compromise
of a system. This makes malware very dangerous. Therefore, appropriate
malware protection is necessary.

The total number of attacks using malware had increased over the past
years. Based on McAfee Labs research, the number climed from approxi-
matly 5.5 billion in Q1 2016 to 6.8 billion in Q1 2017 [66]. This shows a
trend in an increase of malware attacks. Furthermore, a rise is visible in
2017th cyber security incidents including WannaCry51 [67] or Petya52 [68].

Malware defences in common operating systems including Windows and
Linux are either signature-based [69] or behaviour based [70] and are realised
using applications similar to anti virus software.

Signature based is detection regarding the structure or signature of a file.
If the viewed file shows malware characteristics, it is marked as malicious
and further examined.

During behaviour based malware detection, the viewed program is fully
or partially run in an isolated environment such as a sandbox. If the pro-
gram shows malicious intentions, it will not be loaded on the main system.

Both implementations are realised in state of the art anti virus software.
However, regarding a paper published by the anti virus testing company
Anti-Virus Comparative [71], the malicious code detection rate for an o↵-
line search is on average 94% and for an on-line search on average 99.3%.

Military aircraft would be only capable using an on-line search because it
is very resource consuming and those are limited within a military aircraft.
From this it follows that on average 0.7% of malicious code would not be
noticed. The U.S. fighter jet F-35 has more than 8 million lines of code over
all used computers [72]. 0.7% would be 56.000 lines of code, which results
in a lot of space for malware to be hidden in.

An o↵-line search can be realised using external computing power. Al-
though it needs to be ensured, that the software on the system does not
change while uploading it to the aircraft or during the flight.

Certainly, malware gets better over the past year. New mechanisms to
hide malware from defense technologies like changing the signatures of mal-

51The data of computer systems running Microsoft Windows was encrypted.
52Encrypt files of a hard drive for Microsft Windows computer systems.

54 of 87

CHAPTER 7. EVALUATION

ware53 [73] or malware encryption54 [74] get introduced.

In a similar frequency to new malware obfuscation techniques, improved
detection mechanisms are introduced. For example, Al-Saleh introduces an
add-on to check network transfered malware upon arrival using a whitelist
apporach [75]. This mechanism can be used in a military aircraft environ-
ment to check software before it gets loaded on to the aircraft.

Furthermore Aaraj shows a framework to detect malicious code on em-
bedded devices [76]. The author runs the viewed program in a testing en-
vironment and in the real environment. It ensures to check the programs
intentions and check for malicious behaviour. This approach is based on
behaviour based malware detection and can be useful for military aircraft
systems due to its lightweight and low use of resources. The drawback is the
need of two separate environments. The shown implementation is e↵ective
because it detected all tested55 malware instances.

VxWorks 7 does not provide any malware protection. However, the RTOS
o↵ers the possibility to write pre-boot and kernel scripts, which can check
malware using the mentioned mechanisms. The development and im-
plementation of such mechanisms is very time and resource consuming.
Therefore, the mark will be set within the ”Mechanism does not exist”-
column.

7.4 E4 – Bu↵er Overflow (CWE-121/122/123)

Common (real-time) operating systems are vulnerable to bu↵er overflow at-
tacks. This is noticable in statistics published by CVE. In 2017, 37 overflow
vulnerabilties in the Linux Kernel [77] and 46 in Microsoft Windows 10 [78]
were published. Furthermore, in QNX56 real-time operating system, 7 total
overflows [79] and in Wind Rivers VxWorks, 1 overflow [80] is listed in the
CVE database. These numbers display that bu↵er overflow vulnerabilities
are widespread in OS and RTOS.

For this evaluation vulnerable code is used. Each code snipped is sepa-
rately introduced.

53Malware usually gets identified by its signature.
54The malicious code is encrypted. Anti virus software is not able to decrypt it and

check for malicious intentions.
55This includes 15 publicly known malware such as Zeus-1 and Stuxnet-2.
56https://blackberry.qnx.com/

55 of 87

CHAPTER 7. EVALUATION

VxWorks 7 implements kernel hardening features, which are further ex-
amined in Chapter 6.4. First, the scripts are tested on the RTOS without
kernel hardening features enabled. Afterwards, the features are active and
the code snippets are tested again to display, if the security mechanisms
provide any shelter.

To test possible bu↵er overflow attacks against VxWorks 7, the start-up
script was modified with the following C code snipped:

1 [. . .]
2 char ⇤ input ;
3 char buf [1 0] ;
4 input = ”AAAA” ;
5 p r i n t f (” Stack be f o r e s t r cpy :\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p

\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\
n%p\n%p\n\n”) ;

6 s t r cpy (buf , input) ;
7 p r i n t f (”Wrote <%s>\n\n” , buf) ;
8 p r i n t f (” Stack a f t e r s t r cpy :\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\

n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n
%p\n%p\n\n”) ;

9 [. . .]

Using the C function strcpy, the content of the variable input is copied
into a character bu↵er called buf with 10 elements. Each element has the
size of a character (char) with 4 bytes, as displayed in Figure 14.

56 of 87

CHAPTER 7. EVALUATION

Figure 14: Size of the string ”A” on the VxWorks 7 machine

The input variable can contain any possible string57. Furthermore, data
copied into a variable with fixed size (e.g. a bu↵er) does not need to be a
string. It can be in any possible supported format. Although, strings are
being used in the following test.

The values of the input variable is changed to a string containing 44
ASCII characters. As displayed in Figure 15, VxWorks 7 opens the usual
shell since no bu↵er overflow occurred.

57For example: A basic string as used in the following evaluation or communication
relevant information.

57 of 87

CHAPTER 7. EVALUATION

Figure 15: Bu↵er Overflow Test – 44 character copy

The next step is to overflow the stack. As depicted in Figure 16, the
input is now 45 characters, which results in an overflow of the buf variable:

58 of 87

CHAPTER 7. EVALUATION

Figure 16: Bu↵er Overflow Test – 45 character copy

This overflow is present because the bu↵er has only space for 44 elements,
since 44 divided by the number of elements (10) is 4. As already mentioned
before and displayed in Figure 14, the size of one ASCII character (e.g. ”A”)
on this machine is 4 bytes. From this it follows, that the bu↵er overflow

59 of 87

CHAPTER 7. EVALUATION

happens on the 45th element. As displayed in Figure 15 and 16 the pointer
0x1061ec gets overwritten. This pointer is called return pointer and points
to the next instruction, which will be executed on the stack.

Due to the bu↵er overflow, the usual VxWorks shell does not open since
the valid instruction at address 0x1061ec (which points to a valid memory
address) has changed to 0x490061ec (does not point to a valid instruction).
This test shows that VxWorks 7 does not support any additional protection
against a basic bu↵er overflow without using the kernel hardening features.

The next step is to enable the kernel hardening features and test the
above mentioned script58 again. As before, the shell does not open and the
stack layout looks exactly the same (Figure 16). As displayed in Figure 17
the RAM file system is ejected to prevent further damage from happening.
Although, VxWorks 7 needs to be booted manually in order to use it again.

Figure 17: Bu↵er Overflow Test – File system ejected

From this it follows that bu↵er overflows can crash the system. The tests
are positive whether the kernel hardening features are enabled or disabled.
An attacker is not able to write at arbitrary memory regions due to mem-
ory protections. Secure software development prevents bu↵er overflows
from happening. Therefore, the evaluation parameter is located within
the ”Mechanism exists”-column and ”Only extenuates”-column.

7.5 E5 – String Vulnerabilities (CWE-133/134)

Improper use of format specifiers within C format functions such as printf()
can result in data leakage and code flow changes.

A format function takes format specifiers, which indicate how the cor-
responding variable is displayed. For example: In printf("%d %s", var1,

var2) two di↵erent variables (var1 and var2) are displayed. The parameter
var1 is represented as an integer due to the format specifier %d and var2

as a string pointer due to %s. If the number of variables is lower than the

58The bu↵er overflow script with an input of 45 characters.

60 of 87

CHAPTER 7. EVALUATION

number of format specifiers, the format function underflows the stack, oth-
erwise it will overflow the stack [81].

VxWorks 7 implements kernel hardening features, which are further ex-
amined in Chapter 6.4. First, the scripts are tested on the RTOS without
kernel hardening features enabled. Afterwards, the features are active and
the code snippets are tested again, to display, if these security mechanisms
provide any shelter.

To test format string vulnerabilities on the VxWorks 7 system, the start-
up script is modified in di↵erent ways. The following implementation is used:

1 [. . .]
2 char ⇤ input = ” t e s t ” ;
3 p r i n t f (input) ;
4 [. . .]

The character pointer input is modified and can contain all di↵erent
strings. Furthermore, the content of the variable is directly passed to
printf(). As mentioned in Section 7.4, the variable can contain any think-
able string. The code snipped is vulnerable to a format string attack, if
the attacker is able to modify the input variable. To simulate a worst case
scenario, it is assumed that the attacker has control over the content of the
input variable.

The first test is to leak data from the stack. A leak of stack data can
debilitate the security of the aircraft system. The size of variables or memory
areas, addresses, and more can be used to gain information about the system
and its functionality.

Avionic software is flagged with the utmost secrecy due to the military
background. Such leaks can make reverse engineering more simple and more
e�cient, which allows easier attacks since the attacker has a lot of knowledge
about the system.

In the following test, the value of the input variable will be changed to
multiple %p’s, which results in the display of several pointers:

1 [. . .]
2 char ⇤ input = ”\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p

\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\
n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n
%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n\n ” ;

3 p r i n t f (input) ;
4 [. . .]

61 of 87

CHAPTER 7. EVALUATION

Figure 18 shows the execution of the code snipped:

Figure 18: Format String Test – Stack Leak

This example reveals multiple pointers of the stack including ”0xeeeeeeee”,
which is used to fill up the stack at the boot process of the VxWorks. There
is no explanation from Wind River why the stack of the RTOS is filled up
with this pointer.

The next step is to leak local variables because static data and locally

62 of 87

CHAPTER 7. EVALUATION

stored data can contain valuable information59. To accomplish this, the
start-up script is modified in the following way:

1 [. . .]
2 char ⇤ a = ”AAAA” ;
3 char ⇤ input ;
4 char ⇤ b = ”BBBB” ;
5 input = ”\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%

p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p
\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\
n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n\n ” ;

6 char ⇤ c = ”CCCC” ;
7 p r i n t f (input) ;
8 char ⇤ d = ”DDDD” ;
9 [. . .]

Four character pointers, a, b, c, and d are introduced, which contain
static data. The printf()-call is used before the variable d is introduced.
Therefore, only content of a, b, and c should be displayed on the stack
because the variable d is not part of the stack at this time stamp. Figure
19 displays the stack at this point in time:

Figure 19: Stack to the defined time stamp

Figure 20 displays the corresponding output:

59Instead of the used test values, the variable can contain valuable information such as
passwords or keys.

63 of 87

CHAPTER 7. EVALUATION

Figure 20: Format String Test – Leak local data

Since %p is used within the printf()-call, the content of the variables a,
b, and c should be displayed as pointers. Therefore, 0x41414141, 0x42424242,
and 0x43434343 (which is the corresponding pointer representation) should
be visible. As seen in Figure 20, non of the mentioned pointer is apparent.

The next step is to increase the number of printed addresses to display
more of the stack. Although, the expected values still do not show.

From this it follows that the VxWorks 7 Memory Management Unit

64 of 87

CHAPTER 7. EVALUATION

(MMU) does not allow the user60 to read the content of the pointers. The
command vmContextShow displays, which memory areas are protected from
reading, writing, or execution. Figure 21 shows that all memory areas are
read-protected. This is visible in the PROT -column where R means read
protected, W means write protected, and X means execution protected.
Therefore, the content of the values is not visible.

Figure 21: Memory Management Unit Output

After reading data, the next step is to write data. The following code
segment is used to write data on the stack. The format specifier %n is used

60Default user with administrative privileges.

65 of 87

CHAPTER 7. EVALUATION

to write the number of characters which have been written so far [82].

1 [. . .]
2 char ⇤ new input = ”AAAA%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n\n\n ” ;
3 p r i n t f (new input) ;
4 [. . .]

This write of data cause the system to crash. VxWorks 7 can not read
the data and jump to the provided addresses61, which causes a reboot of
the system. The RTOS will reboot all the time, since the start-up script is
executed for every start. A manual stop of the system is necessary. The use
of an arbitrary format string write in the start-up script causes a downtime
of the system, which can be interpreted as a DoS. This weakness is criti-
cal for an aircraft system because it relies on the functionality of all services.

A protection mechanisms is presented by the security researcher Crispin
Cowan, who introduces a framwork called FormatGuard to protect a com-
puter system from format string vulnerabilities. The resreacher describes
the framwork the following way: ”The FormatGuard defends against format
bug attacks by comparing the actual arguments presented to printf against
the number of arguments called by the format string.” [83]. This means that
the format specifiers are compared against the provided variables. If both
are not equal, the FormatGuard will raise an error and stop further exe-
cution. This mechanism could be used for avionic software. This decision
depends on the use case and the available resources.

Furthermore, VxWorks 7 provides advanced stack protection while the
kernel hardening features are enabled. Therefore, the next step is to test
the RTOS with those features enabled.

First, the leak of local data is tested. To accomplish this, the start-up
script is modified in the same way as mentioned before. As expected and
already visible, VxWorks 7 does not leak local data.

In the first place, the arbitrary write of data on the stack caused a DoS,
while no kernel hardening features were enabled. Since those features are
now enabled, VxWorks 7 does not reboot all the time because it ejects the
RAM file system and stops processing. A manual reboot is necessary to
start the RTOS again. This prevents further damage from happening.

61The provided address is 0x41414141, which is ”AAAA” in ASCII representation.

66 of 87

CHAPTER 7. EVALUATION

As a result of this, VxWorks 7 does provide protection against format
string bugs, vulnerabilities, and attacks. The kernel hardening features
shelter the RTOS against a DoS, which results by a vulnerable stack write.
Furthermore, aid during software development is provided byWind River’s
Workbench regarding format string bugs. Therefore, the evaluation pa-
rameter is set to ”Mechanism exist” and ”Full protection”.

7.6 E6 – Secure Cryptography Algorithm

Secure cryptography algorithm harden the system and make sure that sen-
sible data is protected and can be stored securely.

This chapter introduces cryptography libraries mentioned in the Cryp-
tography Libraries Programmer’s Guide [57] for VxWorks 7. The RTOS
o↵ers plenty of cryptography libraries to provide encryption and decryption
of data. This collection is based on OpenSSL 1.0.2 and supports multiple
cryptography algorithms. Besides the algorithms from OpenSSL 1.0.2 in-
cluding Tripple DES, MD5, SHA, RSA (as shown in Figure 22), and more,
VxWorks 7 includes the Advanced Encryption Standard (AES) key wrap
and the AES cypher-based message authentication code (CMAC).

67 of 87

CHAPTER 7. EVALUATION

Figure 22: Generation of a 2048 bit RSA Private Key

VxWorks 7 can be configured to provide the mentioned algorithms. To
add those facilities to the real-time operating system, multiple options in the
VxWorks Source Build (VSB) and the VxWorks Image Project (VIP) must
be set as shown in Figure 23. The RTOS does not support the cryptography

68 of 87

CHAPTER 7. EVALUATION

libraries by default. Therefore, VxWorks 7 with default settings is insecure
relating to secure cryptographic algorithms.

Figure 23: VxWorks Cryptography Configuration for VSB

More libraries and configurations lead to more cryptographic security,
but the VxWorks image is not lightweight any more and needs more stor-
age. The VxWorks 7 binary with cryptography libraries enabled is 27.595954
MB. Without those libraries the size is 27.496172 MB. This is a di↵erence
of 99.792 KB (0.362237%), which can be a lot for an embedded device62.

In conclusion, VxWorks 7 provides a good range of cryptographic algo-
rithms, which are easy to use and publicly considered robust and secure
such as RSA [84] and AES [85]. From this it follows to set the score for
this evaluation parameter to ”mechanism exist” and ”full protection”.

7.7 E7 – Storage of Sensitive Data

Sensitive data is information whose leakage can result in damage to the
overall system, the a↵ected entities63, or exploitation of the RTOS. It can
either be user specific data including passwords or cryptographic based in-
formation such as decryption keys. Exposure of sensitive data can lead to
an unintended disclosure of information, which can result in security issues.

This parameter is evaluated using a manual audit.

62The development board P4080DS from NXP has a default storage of 16 MB [42].
63For example: other aircraft, drones, ground stations, or communication channels.

69 of 87

CHAPTER 7. EVALUATION

Within VxWorks 7, cryptographic keys and passwords are stored in mul-
tiple sections of the RTOS. On the one hand, in the Key Store and on the
other hand in the Secrets Repository.

Public key pairs generated by cryptographic algorithms inlcuding Rivest
Shamir Adleman (RSA) [84], Digital Signature Algorithm (DSA) [86], and
Elliptic Curve Cryptography (ECC) [87] are stored in the Key Store.

For the storage of passwords and symmetric encryption keys64 [88] Vx-
Works 7 implements the Secrets Repository. The data is encrypted in sepa-
rate files, contrary to the Key Store, which does not encrypt user passwords
and uses clear text to represent the information.

Key-encrypting password (KEP) providers are used to encrypt data in
the Secrets Repository. VxWorks 7 supports the hardware based Trusted
Platform Module 2.0 (TPM), software based Binary Large Object (BLOB),
costume KEP providers65, and a software based password obfuscater.

TPM 2.0 seals strings including passwords with TPM 2.0 hardware,
which is defined by the ISO/IEC 11889-1 standard [89].

BLOB keys are used to save storage space and database transactions
processing time since large binary data is stored in single entities within
a database system [90]. A BLOB key provides confidentially and integrity
protection due to the use of headers and private-public key algorithms [57].

VxWorks’ password obfuscator uses the Password-Based Cryptography
Specification (PKCS Number 5) [91], which covers key derivation functions,
encryption schemes, message-authentication schemes, and more.

The cryptographic libraries for VxWorks 7 provide a trusted key store
for public key certificates. Those certificates provide the ability to check
the ownership of a public key value. Such a value can either be trusted or
untrusted. This technology can be used to validate the integrity of software
including packages, add-ons, plug-ins, and updates by adding a certificate
to a software module.

64Generated by algorithms including Data Encryption Standard (DES) and CAST-128.
65This can be a self implemented encryption password.

70 of 87

CHAPTER 7. EVALUATION

In summary VxWorks 7 provides two strong mechanisms to store sensitive
data. The Key Store is more lightweight but does not encrypt data by de-
fault and the Secrets Repository is not that lightweight but does encrypt
data. It is up to the developer and system architect to use them prop-
erly and implement them as needed. This evaluation parameter is marked
within it ”Mechanism exists”-column. Since the Key Store contains pass-
words ins clear-text, the ”Only extenuates”-column will be marked.

7.8 E8 – Command Injection (CWE-77/78)

CWE 77-78 defines command injections as external input received by an
application, which can lead to the execution of unintended commands [92].
C functions like system(command) can execute system specific commands.
If an attacker is able to gain control66 over the command variable, he has the
ability to execute system commands. This results in a security issue for the
prone application.

Secure software development can prevent command injection attacks and
vulnerabilities. This topic is further discussed in Chapter 5.2. This param-
eter is examined using manual code audits.

The following Python code displays the misuse of a system command on
a 32-bit UNIX system:

1 import sys
2 # import c a l l which a l l ows to execute system commands
3 from subproces s import c a l l
4

5 # read a f i l e and wr i t e the r e s u l t to standard output
6 cat = ” cat ”
7

8 # get the user input
9 us e r i npu t = sys . argv [1]

10

11 # execute system command
12 c a l l ([cat , u s e r i npu t])

If the script is executed, the following output is printed:

1 admin@lab : ˜ $ python c a l l . py f i l e
2 This f i l e conta in s some text .

The Python script works as intended since it just prints the content of the
file name file. However, since the attacker controls the input he is able to
misuse the script and inject more system commands:

66For example by exploiting a bu↵er overflow vulnerability.

71 of 87

CHAPTER 7. EVALUATION

1 admin@lab : ˜ $ python c a l l . py f i l e ; echo ” a t tacke r was here ”
2 This f i l e conta in s some text .
3 a t ta cke r was here

The attacker is able to execute all possible system commands, from printing
some text up to reading passwords.

The RTOS does not explicitly use system functions in any available start-
up or kernel scripts. Certainly, the symbol table contains the standard C
function system, as displayed in Figure 24.

Figure 24: Symbol Table System Function

VxWorks 7 does not provide any publicly mentioned security features
preventing command injections. However, every custom developed ap-
plication, which uses system commands, can be prone to this attack. A
focus on user input during software development is necessary to prevent
a command injection vulnerability. Chapter 5 displays common security
mistakes by programmers. Therefore, the evaluation parameter will be
placed within the ”Mechanism does not exist”-column.

7.9 E9 – Integrity check of external Software

Within a publicly released presentation [93], the U.S. Air Force describes the
process for updating software of the weapon system of their military fighter

72 of 87

CHAPTER 7. EVALUATION

jets. Software developed within their Aircraft System Software Development
Source Center is checked multiple times using virus scanners67. The transfer
and update mediums are CD, DVD, or Floppy. The result of a manual audit
is that there is no indication for an integrity check of external software such
as separate code signing in the described process. If the software on such
a disk would be changed in a malicious way and furthermore could not be
identified as a virus, an attacker would be able to compromise the system
without any notice.

Operating systems and framworks can provide code signing and integrity
checks using separate technologies and mechanisms. For example, Microsoft
Windows o↵ers the ability to sign code with trusted certificates to indicate
the integrity of the signed source code [94]. If the code would change after
the signing process, the certificate is not valid any more.

Before the upload of software to a military aircraft, the software should
be checked. It is even more secure to check the software on the aircraft itself.
The RTOS can provide such mechanisms. VxWorks 7 does not provide any
technology to check the integrity of external added software.

Although, Wind Rivers Workbench o↵ers the developer to edit the start-
up script. From this it follows that the signing and validating of certificates
is realizable on a VxWorks 7 system. A possible code signing implementation
can look like this:

1. Securely transfer and store the public/private key pair.

2. Hash the original code using the public key with a hash function such
as SHA.

3. Store the hash from the original code in the Key Store or Secrets
Repository.

On the other hand, a possible code verification implementation can look like
this:

1. Decrypt the signed code using the private key.

2. Compare the hash of the signed code with the hash of the original
code.

3. If both are equal, nothing has changed. If they are not equal, the code
has changed.

67No information about the virus scanners is publicly accessible.

73 of 87

CHAPTER 7. EVALUATION

The certificates can securely be stored within the Secrets Repository,
which is further described in Chapter 7.7.

Since VxWorks 7 does not o↵er any mechanism and technology to check
the integrity of external software, but Wind Rivers Workbench provides
the ability to edit the start-up script, a mark will be set within the ”Mech-
anism does exist”-column and ”Only extenuates”-column.

7.10 Summary

Evaluation Parameter E1: Chapter 7.1 describes the threat of improper au-
thentication. By default, VxWorks 7 does not provide protective mech-
anisms against those threats by using publicly available credentials. Al-
though, the RTOS o↵ers custom login and password policies, which can be
added manually by the developer to secure the system regarding this topic.

Evaluation Parameter E2: The evaluation of Chapter 7.2 describes priv-
ilege management. VxWorks 7 o↵ers a robust and secure management of
privileges using two modes, privileged and user mode, with separated access
control. Furthermore, by default two file systems, ROM and RAM, provide
dedicated storage of sensitive data. Although, the correct assignment of
privileges regarding resources is up to the developer and system architect.

Evaluation Parameter E3: Chapter 7.3 specifies the protection against
malware. Such protection technologies can be code signing or signature
handling. VxWorks 7 does not provide any mechanisms or frameworks to
protect the system against this threat. The RTOS grants the ability to edit
start-up scripts, which make these technologies realizable, certainly with
high e↵ort.

Evaluation Parameter E4: This parameter examines bu↵er overflow vul-
nerabilities. It is possible to smash the stack using a program with a common
overflow of a defined bu↵er. VxWorks 7 crashes, if it notices the overflow.
Although, the MMU protects the RTOS by ejecting the file system and
preventing further damage. Shelter against bu↵er overflows are based on
secure software development in the corresponding language as described in
Chapter 5.2 since the kernel hardening features o↵er protection regarding
this threat.

Evaluation Parameter E5: String vulnerabilities are defined in Chapter
7.5. Wind River’s Workbench o↵ers warnings and errors regarding those
vulnerabilities while developing software. The RTOS itself does not provide
any mechanism, which protects VxWorks 7 from string vulnerabilities. It is

74 of 87

CHAPTER 7. EVALUATION

possible to DoS the RTOS exploiting a string vulnerability. Secure software
development is described in Chapter 5.2 and can prevent those vulnerabili-
ties and attacks from occurring.

Evaluation Parameter E6: Chapter 7.6 describes secure cryptography al-
gorithms. This topic can easily result in threats or attacks, if not treated
well enough. VxWorks 7 o↵ers a rich number of cryptographic libraries and
algorithms, which are easy to use and enabled by default. Furthermore, at
this point in time all algorithms and libraries are considered as robust and
secure by the public opinion.

Evaluation Parameter E7: The storage of sensitive data is examined in
Chapter 7.7. VxWorks 7 introduces two storage locations for sensitive data.
On the one hand the Secrets Repository and on the other hand the Key
Store. Both provide the ability to store data in multiple representation
formats. Although, by default information within the Key Store is stored in
clear-text, which makes it readable for every user on the system.

Evaluation Parameter E8: This Chapter 7.8, specifies command injection
attacks. The result of an evaluation relating to this parameter is the absence
of any security mechanism provided by VxWorks 7. Command injections are
possible since these functions are part of the symbol table. Secure software
development with proper input handling can prevent these attacks.

Evaluation Parameter E9: Chapter 7.9 examines the integrity check of
external software. VxWorks 7 does not provide any technology to implement
signing of source code or applications. Although, through the editing of the
start-up scripts it is possible to implement this mechanism.

Table 7.1 displays the filled and final matrix, which is the outcome of
the security evaluation for VxWorks 7 for avionic systems.

75 of 87

C
a
te
g
o
ry

T
h
re

a
t,

V
u
ln
e
ra

b
il
it
y

o
r
A
tt
a
ck

M
e
ch

a
n
is
m

e
x
is
ts

M
e
ch

a
n
is
m

d
o
e
s
n
o
t
e
x
is
t

E
v
a
lu
a
ti
o
n

N
am

e
F
u
ll

p
ro
te
ct
io
n

O
n
ly

ex
te
nu

at
es

A
u
th
en
ti
ca
ti
on

Im
p
ro
p
er

A
u
th
en
ti
ca
ti
on

(C
W

E
-2
87

)

A
u
th
en
ti
ca
ti
on

an
d
L
og

in
P
ol
ic
ie
s

X
E
1

A
cc
es
s
C
on

tr
ol

P
ri
vi
le
ge

M
an

ag
em

en
t

(C
W

E
-2
64

/2
66

/2
69

)

U
se
r
d
at
ab

as
e

an
d
ro
b
u
st

p
ri
vi
le
ge

as
si
gn

m
en
t

X
E
2

D
at
a
P
ro
te
ct
io
n

M
al
w
ar
e
P
ro
te
ct
io
n

X
E
3

R
es
ou

rc
es

m
an

ag
em

en
t

B
u
↵
er

O
ve
rfl
ow

(C
W

E
-1
21

/1
22

/1
23

)
G
u
ar
d
S
ta
ck

P
ro
te
ct
io
n

X
E
4

S
tr
in
g
vu

ln
er
ab

il
it
ie
s

(C
W

E
-1
33

/1
34

)
K
er
n
el

h
ar
d
en

in
g

fe
at
u
re
s

X
E
5

C
ry
p
to
gr
ap

hy
S
ec
u
re

cr
yp

to
gr
ap

hy
al
go

ri
th
m

C
ry
p
to
gr
ap

h
ic

li
b
ra
ri
es

X
E
6

S
to
ra
ge

of
se
n
si
ti
ve

in
fo
rm

at
io
n

K
ey

S
to
re

an
d
S
ec
re
ts

R
ep

os
it
or
y

X
E
7

O
th
er

C
om

m
an

d
In
je
ct
io
n

(C
W

E
-7
7/

78
)

X
E
8

In
te
gr
it
y
ch
ec
k
of

ex
te
rn
al

so
ft
w
ar
e

E
d
it
S
ta
rt
-

u
p
S
cr
ip
t

X
E
9

T
ab

le
7.
1:

F
in
al

S
ec
u
ri
ty

E
va
lu
at
io
n
M
at
ri
x

Chapter 8

Conclusion and Outlook

The purpose of the security evaluation for the real-time operating system
VxWorks 7 for avionic systems is to determine if the RTOS o↵ers protective
mechanisms, which shelter the system against common threats, attacks, and
vulnerabilities.

Secure software development is necessary to o↵er a sheltered avionic sys-
tem. Although, not every developer provides a su�cient security awareness
and knowledge. At this point, the real-time operating system can protect the
system from security critical software errors as well as mistakes. Therefore,
common threats, vulnerabilities, and attacks are tested to present technolo-
gies and mechanisms provided by the RTOS to protect an avionic system.

The result is the generation of the final evaluation matrix. VxWorks 7
shows good basic security mechanisms to protect the system against com-
mon threats, attacks, and vulnerabilities in the relevant categories as well
as the viewed area68. Although, issues appeared in malware protection and
command injection vulnerabilities, where no mechanism or technology is
provided. Security mechanisms o↵er basic protection against issues within
the privilege management, bu↵er overflows, and secure cryptography algo-
rithms. Other technologies can (through implementing appropriate mecha-
nisms) protect the system against the viewed threats, attacks, and vulner-
abilities. It was even possible to cause a DoS of the RTOS by exploiting
string vulnerabilities.

Further safeguarding mechanisms and technologies can be implemented
to harden a VxWorks 7 system.

68Avionic systems.

77

CHAPTER 8. CONCLUSION AND OUTLOOK

Continued research can be performed to ensure security for VxWorks
7. This can be accomplished by performing penetration tests or further
security evaluations on specific areas of the RTOS such as authentication
technologies or key management on a used and implemented system. Fur-
ther, security assessments of secure implementations and configurations for
specific circumstances can be evaluated to ensure the creation of secure Vx-
Works 7 images.

Additionally, security evaluations and penetration tests can be performed
on physical hardware devices, since this thesis discusses a virtual environ-
ment. Those tests can produce additional benefit to provide secure systems.

78 of 87

Bibliography

[1] I. O. for Standardization, “Information technology – programming lan-
guages – c,” standard, International Organization for Standardization,
Geneva, CH, 12 2011. Last accessed 06. August 2017.

[2] I. O. for Standardization, “Information technology – programming lan-
guages – c++,” standard, International Organization for Standardiza-
tion, Geneva, CH, 12 2014. Last accessed 06. August 2017.

[3] F. O. for Information Security (BSI), “Die lage der it-sicherheit in
deutschland 2017,” resreport, Federal O�ce for Information Security
(BSI), Godesberger Allee 185-189, 53175 Bonn, Aug. 2017. Item Num-
ber: BSI-LB17/506.

[4] “CVE Details apple mac osx - vulnerability trends over time.”
http://www.cvedetails.com/product/156/Apple-Mac-Os-X.html?

vendor_id=49, 2017. Last accessed 01. August 2017.

[5] “CVE Details microsoft windows 10 - vulnerability trends
over time.” http://www.cvedetails.com/product/32238/

Microsoft-Windows-10.html?vendor_id=26, 2017. Last accessed 01.
August 2017.

[6] “CVE Details linux kernel - vulnerability trends over time.”
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.

html?vendor_id=33, 2017. Last accessed 01. August 2017.

[7] A. West, “Nasa study on flight software complexity.” https://www.

nasa.gov/pdf/418878main_FSWC_Final_Report.pdf, 2001. Last ac-
cessed: 14. November 2017.

[8] H. Teso, “Aircraft hacking – practical aero series.” https:

//conference.hitb.org/hitbsecconf2013ams/materials/

79

http://www.cvedetails.com/product/156/Apple-Mac-Os-X.html?vendor_id=49
http://www.cvedetails.com/product/156/Apple-Mac-Os-X.html?vendor_id=49
http://www.cvedetails.com/product/32238/Microsoft-Windows-10.html?vendor_id=26
http://www.cvedetails.com/product/32238/Microsoft-Windows-10.html?vendor_id=26
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.nasa.gov/pdf/418878main_FSWC_Final_Report.pdf
https://www.nasa.gov/pdf/418878main_FSWC_Final_Report.pdf
https://conference.hitb.org/hitbsecconf2013ams/materials/D1T1%20-%20Hugo%20Teso%20-%20Aircraft%20Hacking%20-%20Practical%20Aero%20Series.pdf
https://conference.hitb.org/hitbsecconf2013ams/materials/D1T1%20-%20Hugo%20Teso%20-%20Aircraft%20Hacking%20-%20Practical%20Aero%20Series.pdf
https://conference.hitb.org/hitbsecconf2013ams/materials/D1T1%20-%20Hugo%20Teso%20-%20Aircraft%20Hacking%20-%20Practical%20Aero%20Series.pdf

BIBLIOGRAPHY

D1T1%20-%20Hugo%20Teso%20-%20Aircraft%20Hacking%20-%

20Practical%20Aero%20Series.pdf, Apr. 2013. Last accessed:
16. November 2017.

[9] U.S.Code, “Information security.” https://www.law.cornell.edu/

uscode/pdf/uscode44/lii_usc_TI_44_CH_35_SC_III_SE_3542.pdf,
Jan. 2012. Published in U.S. Code Title 44, Chapter 35, Subchapter
III, § 3542(1)(A)/(B)/(C).

[10] R. Shirey, “Internet security glossary,” 2000.

[11] C. Eckert, IT-Sicherheit: Konzepte, Verfahren, Protokolle. Oldenbourg
Verlag, 7 ed., 2012.

[12] K. D. Morgan, “The rtos di↵erence,” BYTE, vol. 17, pp. 161–172, Aug.
1992.

[13] W. Stallings, Operating Systems: Internals and Design Principles. Up-
per Saddle River, NJ, USA: Prentice Hall Press, 6th ed., 2008.

[14] WindRiver, “Vxworks product.” https://www.windriver.com/

products/vxworks/, 2017. Last accessed 05. August 2017.

[15] WindRiver, “Wind river vxworks 653 platform,” techreport, Wind
River Systems, Inc., Aug. 2017. Last accessed 27. November 2017.

[16] I. O. for Standardizatioin, “Information technology – programming lan-
guages – ada,” standard, International Organization for Standardiza-
tioin, Geneva, CH, 12 2012. Last accessed 06. August 2017.

[17] AdaCore, “Gnatbench – ada development plug-
in for eclipse and wind river systems workbench.”
https://www.adacore.com/gnatpro/toolsuite/gnatbench, 2017. Last
accessed 27. November 2017.

[18] WindRiver, “Workbench 4 - getting started,” tech. rep., Wind River
Systems, Inc., Aug. 2017. Last accessed 27. November 2017.

[19] G. C. Rafael V. Aroca, “A real time operating systems (rtos) compar-
ison,” 2009.

[20] A. K. Sood, “Digging inside the vxworks os and firmware – the holistic
security,” 2011.

80 of 87

https://conference.hitb.org/hitbsecconf2013ams/materials/D1T1%20-%20Hugo%20Teso%20-%20Aircraft%20Hacking%20-%20Practical%20Aero%20Series.pdf
https://conference.hitb.org/hitbsecconf2013ams/materials/D1T1%20-%20Hugo%20Teso%20-%20Aircraft%20Hacking%20-%20Practical%20Aero%20Series.pdf
https://conference.hitb.org/hitbsecconf2013ams/materials/D1T1%20-%20Hugo%20Teso%20-%20Aircraft%20Hacking%20-%20Practical%20Aero%20Series.pdf
https://www.law.cornell.edu/uscode/pdf/uscode44/lii_usc_TI_44_CH_35_SC_III_SE_3542.pdf
https://www.law.cornell.edu/uscode/pdf/uscode44/lii_usc_TI_44_CH_35_SC_III_SE_3542.pdf
https://www.windriver.com/products/vxworks/
https://www.windriver.com/products/vxworks/

BIBLIOGRAPHY

[21] Rapid7, “Shiny old vxworks vulnerabilities.” https://blog.rapid7.

com/2010/08/02/shiny-old-vxworks-vulnerabilities/, Aug.
2010. Last accessed: 05. October 2017.

[22] M. Rhodes-Ousley, Information security the complete reference, vol. 2.
McGraw-Hill, 2013.

[23] J. Xie, H. R. Lipford, and B. Chu, “Why do programmers make security
errors?,” in 2011 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pp. 161–164, Sept 2011.

[24] LockheedMartinCorporation, “Joint strike fighter – air vehicle – c++
coding standards – for the system development and demonstration pro-
gram,” Dec. 2005.

[25] J. Wakely, “Gcj.” https://gcc.gnu.org/wiki/GCJ, July 2017.

[26] C. Pohl and H. Hof, “Secure scrum: Development of secure software
with scrum,” CoRR, vol. abs/1507.02992, 2015.

[27] R. C. Seacord, Secure Coding in C and C++. Addison-Wesley Profes-
sional, 2nd ed., 2013.

[28] Aleph1, “Smashing the stack for fun and profit.” http://phrack.org/

issues/49/14.html, 11 1996. Last accessed 06. September 2017.

[29] libc(7) Linux Programmer’s Manual, 12 2016.

[30] A. Follner, On Generating Gadget Chains for Return-Oriented Pro-
gramming. phdthesis, Technical University Darmstadt - Faculty Com-
puter Science, Darmstadt, Germany, Dec. 2017.

[31] J. Foster, Sockets, Shellcode, Porting, and Coding: Reverse Engineering
Exploits and Tool Coding for Security Professionals. Elsevier Science,
2005. Last accessed 06. September 2017.

[32] M. Mol, “Rosetta code- integer overflow.” https://rosettacode.org/
wiki/Integer_overflow, 03 2017. Last accessed 25. August 2017.

[33] T. Granlund, “The gnu multiple precision arithmetic libary,” techre-
port, Free Software Foundation, Inc., 12 2016.

[34] R. T. C. for Aeronautics (RTCA), “Software considerations in airborne
systems and equipment certification,” standard, RTCA, Inc., Washing-
ton, DC 20036-3816 USA, 12 2011.

81 of 87

https://blog.rapid7.com/2010/08/02/shiny-old-vxworks-vulnerabilities/
https://blog.rapid7.com/2010/08/02/shiny-old-vxworks-vulnerabilities/
https://gcc.gnu.org/wiki/GCJ
http://phrack.org/issues/49/14.html
http://phrack.org/issues/49/14.html
https://rosettacode.org/wiki/Integer_overflow
https://rosettacode.org/wiki/Integer_overflow

BIBLIOGRAPHY

[35] H. Afzali and H. Mokhtari, A Quantitative Model of Operating System
Security Evaluation, pp. 345–353. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012. Last accessed 06. September 2017.

[36] “CVE Details common vulnerabilities and exposures databaes.” http:

//www.cvedetails.com/, 2017. Last accessed 30. Juli 2017.

[37] M. Corporation, CWE - Common Weakness Enumeration - A
Community-Developed Dictionary of Software Weakness Types. MITRE
Corporation, 2.11 ed., May 2017. CWE is a Software Assurance strate-
gic initiative sponsored by the National Cyber Security Division of the
U.S. Department of Homeland Security.

[38] FLEXnet, “Flexnet licensing end user guide.” http://www.media.

3ds.com/support/simulia/public/flexlm108/EndUser/chap6.htm,
2005. Last accessed 21. September 2017.

[39] Hawlett-Packard, Intel, Microsoft, Phoenix-Technologies, and Toshiba,
“Advanced configuration and power interface specification,” tech. rep.,
Hawlett-Packard Corporation, Intel Corporation, Microsoft Corpora-
tion, Phoenix Technologies Ltd. and Toshiba Corporation, Nov. 2013.
Revision 5.0 Errata A.

[40] R. Jaworowski, “Flattend device trees for embedded freebsd,” The
FreeBSD Project, 2010.

[41] H. Zimmermann, “Osi reference model - the iso model of architecture
for open systems interconnection,” IEEE Transactions on Communica-
tions, vol. 28, pp. 425–432, April 1980.

[42] Freescale, “Qoriq multicore processor development – p4080 develop-
ment system,” tech. rep., NXP, 2013.

[43] P. O. Rino Micheloni, Giovanni Campardo, Memories in Wireless Sys-
tems. Springer Berlin Heidelberg, 2008.

[44] E. Harari, “Electrically erasable non-volatile semiconductor memory,”
09 1978. United States Patent 4,115,914.

[45] SanDisk, “Sandisk sd card - product manual,” tech. rep., SanDisk Cor-
poration, 11 2004.

[46] G. Likely and J. Boyer, “A symphony of flavours: Using the device tree
to describe embedded hardware,” in Proceedings of the Linux Sympo-
sium, vol. 2, pp. 27–37, 2008.

82 of 87

http://www.cvedetails.com/
http://www.cvedetails.com/
http://www.media.3ds.com/support/simulia/public/flexlm108/EndUser/chap6.htm
http://www.media.3ds.com/support/simulia/public/flexlm108/EndUser/chap6.htm

BIBLIOGRAPHY

[47] Freescale, “P4080 development system user’s guide,” techreport, NXP,
2010.

[48] J. Engblom, “Inside a synthetic simulated platform.” http://blogs.

windriver.com/engblom/2012/07/inside-the-simics-qsp.html,
July 2012.

[49] M. Corporation, Improper Authentication. MITRE Corporation,
2.11 ed., May 2017. CWE is a Software Assurance strategic initia-
tive sponsored by the National Cyber Security Division of the U.S.
Department of Homeland Security.

[50] K. Zetter, “Weak password brings ’happiness’ to twitter hacker.”
https://www.wired.com/2009/01/professed-twitt/, Jan. 2009.
Last accessed: 18. October 2017.

[51] R. T. C. for Aeronautics (RTCA), “Airworthiness security process spec-
ification,” standard, RTCA, Inc., 08 2014.

[52] R. T. C. for Aeronautics (RTCA), “Security do-355 information security
guidance for continuing airworthiness,” standard, RTCA, Inc., 06 2014.

[53] R. T. C. for Aeronautics (RTCA), “Airworthiness security methods and
considerations,” standard, RTCA, Inc., 09 2014.

[54] I. O. for Standardization, “Information technology – security techniques
– evaluation criteria for it security – part 1: Introduction and gen-
eral model,” standard, International Organization for Standardization,
Geneva, CH, 01 2014.

[55] I. O. for Standardization, “Information technology – security techniques
– evaluation criteria for it security – part 2: Security functional com-
ponents,” standard, International Organization for Standardization,
Geneva, CH, 05 2011.

[56] I. O. for Standardization, “Information technology – security techniques
– evaluation criteria for it security – part 3: Security assurance com-
ponents,” standard, International Organization for Standardization,
Geneva, CH, 05 2011.

[57] WindRiver, “Vxworks 7 – cryptography libraries programmer’s guide,”
tech. rep., Wind River Systems, Inc., 2017.

83 of 87

http://blogs.windriver.com/engblom/2012/07/inside-the-simics-qsp.html
http://blogs.windriver.com/engblom/2012/07/inside-the-simics-qsp.html
https://www.wired.com/2009/01/professed-twitt/

BIBLIOGRAPHY

[58] Cirt, “Default passwords.” https://cirt.net/passwords, 2017. Last
accessed: 16. October 2017.

[59] DefaultPasswordList, “Default password list – displaying 1812 pass-
words of total 1812 entrys..” http://www.defaultpassword.com, 2017.
Last accessed: 16. October 2017.

[60] Phenoelit, “Default password list.” http://www.phenoelit.org/dpl/

dpl.html, 2007. Last accessed: 16. October 2017.

[61] B. Krebs, “Equifax breach: Setting the record
straight.” https://krebsonsecurity.com/2017/09/

equifax-breach-setting-the-record-straight/, Sept. 2007.
Last accessed: 16. October 2017.

[62] KrebsonSecurity, “Ayuda! (help!) equifax has
my data!.” https://krebsonsecurity.com/2017/09/

ayuda-help-equifax-has-my-data/, Sept. Last accessed: 09.
October 2017.

[63] M. Corporation, Improper Privilege Managment. MITRE Corporation,
2.11 ed., May 2017. CWE is a Software Assurance strategic initiative
sponsored by the National Cyber Security Division of the U.S. Depart-
ment of Homeland Security.

[64] J. H. Saltier and M. P. Schroeder, “Protection of information in com-
puter systems,” IEEE CSIT Newsletter, vol. 3, pp. 19–19, Dec 1975.

[65] J. Powers, R. Smith, Z. Korkmaz, and H. Ahmed, “Whistlist malware
defense for embedded control system devices,” in 2015 Saudi Arabia
Smart Grid (SASG), pp. 1–6, Dec. 2015.

[66] McAfee, “Mcafee labs threats report june 2017,” tech. rep., June 2017.
Last accessed: 11. October 2017.

[67] L. H. Newman, “The ransomware meltdown experts
warned about is here.” https://www.wired.com/2017/05/

ransomware-meltdown-experts-warned/, 2017. Last accessed:
19. October 2017.

[68] A. Greenberg, “Petya ransomware epidemic may be
spilleover from cyberwar.” https://www.wired.com/story/

petya-ransomware-ukraine/, June 2017. Last accessed: 19.
October 2017.

84 of 87

https://cirt.net/passwords
http://www.defaultpassword.com
http://www.phenoelit.org/dpl/dpl.html
http://www.phenoelit.org/dpl/dpl.html
https://krebsonsecurity.com/2017/09/equifax-breach-setting-the-record-straight/
https://krebsonsecurity.com/2017/09/equifax-breach-setting-the-record-straight/
https://krebsonsecurity.com/2017/09/ayuda-help-equifax-has-my-data/
https://krebsonsecurity.com/2017/09/ayuda-help-equifax-has-my-data/
https://www.wired.com/2017/05/ransomware-meltdown-experts-warned/
https://www.wired.com/2017/05/ransomware-meltdown-experts-warned/
https://www.wired.com/story/petya-ransomware-ukraine/
https://www.wired.com/story/petya-ransomware-ukraine/

BIBLIOGRAPHY

[69] D. Venugopal and G. Hu, “E�cient signature based malware detection
on mobile devices,” Mobile Information Systems, vol. 4, no. 1, pp. 33–
49, 2008.

[70] S. Oh, W. Go, and T. Lee, “A study on the behavior-based malware
detection signature,” in Advances on Broad-Band Wireless Computing,
Communication and Applications, pp. 663–670, Springer International
Publishing, oct 2016.

[71] AV-Comparatives, “Malware protection test – file detection test with
execution,” tech. rep., Apr. 2017. Last accessed: 11. October 2017.

[72] lockheedmartin, “Software you wish you had: Inside the f-35 super-
computer.” http://lockheedmartin.com/us/news/features/2015/

072015-f35-supercomputer.html, July 2015. Last accessed: 19. Oc-
tober 2017.

[73] F. Daryabar, A. Dehghantanha, and N. I. Udzir, “Investigation of by-
passing malware defences and malware detections,” in 2011 7th In-
ternational Conference on Information Assurance and Security (IAS),
pp. 173–178, Dec 2011.

[74] M. Christiansen, “Bypassing malware defenses,” SANS Institute In-
foSec Reading Room, May 2010. Last accessed: 11. October 2017.

[75] M. I. Al-Saleh and B. Shebaro, “Enhancing malware detection: Clients
deserve more protection,” Int. J. Electron. Secur. Digit. Forensic, vol. 8,
pp. 1–16, Dec. 2016.

[76] N. Aaraj, A. Raghunathan, and N. K. Jha, “A framework for defend-
ing embedded systems against software attacks,” ACM Trans. Embed.
Comput. Syst., vol. 10, pp. 33:1–33:23, May 2011.

[77] “CVE Details linux kernel vulnerability statistics.” http:

//www.cvedetails.com/product/47/Linux-Linux-Kernel.html?

vendor_id=33, 2017. Last accessed 25. October 2017.

[78] “CVE Details microsoft windows 10 vulnerability statistics.” http:

//www.cvedetails.com/product/32238/Microsoft-Windows-10.

html?vendor_id=26, 2017. Last accessed 25. October 2017.

[79] “CVE Details qnx rtos vulnerability statistics.” http://www.

cvedetails.com/product/2084/QNX-Rtos.html?vendor_id=436,
2017. Last accessed 25. October 2017.

85 of 87

http://lockheedmartin.com/us/news/features/2015/072015-f35-supercomputer.html
http://lockheedmartin.com/us/news/features/2015/072015-f35-supercomputer.html
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/32238/Microsoft-Windows-10.html?vendor_id=26
http://www.cvedetails.com/product/32238/Microsoft-Windows-10.html?vendor_id=26
http://www.cvedetails.com/product/32238/Microsoft-Windows-10.html?vendor_id=26
http://www.cvedetails.com/product/2084/QNX-Rtos.html?vendor_id=436
http://www.cvedetails.com/product/2084/QNX-Rtos.html?vendor_id=436

BIBLIOGRAPHY

[80] “CVE Details wind river vxworks vulnerability statistics.”
http://www.cvedetails.com/product/15063/Windriver-Vxworks.

html?vendor_id=95, 2017. Last accessed 25. October 2017.

[81] K. Lhee and S. J. Chapin, “Bu↵er overflow and format string overflow
vulnerabilities,” Softw., Pract. Exper., vol. 33, no. 5, pp. 423–460, 2003.

[82] PRINTF(3) – BSD Library Functions Manual, 2009.

[83] C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman, M. Frantzen,
and J. Lokier, “Formatguard: Automatic protection from printf for-
mat string vulnerabilities,” in Proceedings of the 10th Conference on
USENIX Security Symposium - Volume 10, SSYM’01, (Berkeley, CA,
USA), pp. 15–15, USENIX Association, 2001.

[84] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining dig-
ital signatures and public-key cryptosystems,” Commun. ACM, vol. 21,
pp. 120–126, Feb. 1978.

[85] D. Hoon Lee and X. Wang, Advances in Cryptography - ASIACRYPT
2011 17th International Conference on the Theory and Application of
Cryptography and Information Security, Seoul, Sout Korea, December
4-8, 2011,. P, vol. 7073. Jan. 2011.

[86] J. Buchmann, “The digital signature algorithm (dsa),” Neurosurgical
Review, 21 2001.

[87] V. Kapoor, V. S. Abraham, and R. Singh, “Elliptic curve cryptogra-
phy,” Ubiquity, vol. 2008, pp. 7:1–7:8, May 2008.

[88] Ayushi, “A symmetric key cryptographic algorithm,” in International
Journal of Computer Applications - Volume 1 - No. 15, 2010.

[89] I. O. for Standardization, “Information technology – trusted platform
module library – part 1 architecture,” standard, International Orga-
nization for Standardization, Geneva, CH, 08 2015. Last accessed 06.
August 2017.

[90] M. Shapiro and E. Miller, “Managing databases with binary large ob-
jects,” in 16th IEEE Symposium on Mass Storage Systems in coopera-
tion with the 7th NASA Goddard Conference on Mass Storage Systems
and Technologies (Cat. No.99CB37098), pp. 185–193, 1999.

86 of 87

http://www.cvedetails.com/product/15063/Windriver-Vxworks.html?vendor_id=95
http://www.cvedetails.com/product/15063/Windriver-Vxworks.html?vendor_id=95

BIBLIOGRAPHY

[91] A. R. K. Moriarty, B. Kaliski, “Pkcs number 5: Password-based cryp-
tographic specification version 2.1,” Tech. Rep. 8018, Internet Engi-
neering Task Force (IETF), Jan. 2017. Last accessed 07. November
2017.

[92] M. Corporation, Improper Neutralization of Special Elements used in a
Command (Command Injection). MITRE Corporation, 2.11 ed., May
2017. CWE is a Software Assurance strategic initiative sponsored by the
National Cyber Security Division of the U.S. Department of Homeland
Security.

[93] D. R. Patel, “Managing cybersecurity risk in weapon systems.” Last
accessed 07. November 2017, Mar. 2017.

[94] Microsoft, “Get a code signing certificate.” https://docs.

microsoft.com/en-us/windows-hardware/drivers/dashboard/

get-a-code-signing-certificate, Apr. 2017. Last accessed: 08.
November 2017.

87 of 87

https://docs.microsoft.com/en-us/windows-hardware/drivers/dashboard/get-a-code-signing-certificate
https://docs.microsoft.com/en-us/windows-hardware/drivers/dashboard/get-a-code-signing-certificate
https://docs.microsoft.com/en-us/windows-hardware/drivers/dashboard/get-a-code-signing-certificate

	Introduction
	Background
	Relevant Information Security Aspects
	Threat, Vulnerability, and Attack
	Real-time Operating System VxWorks
	Workbench and Simics

	Related Work
	Evaluation Approach
	Analysis
	Developers security awareness
	Secure Software Development in C and C++
	Strings and User Input
	Pointer Subterfuge
	Integers
	Formatted Output (Format Strings)
	File I/O

	Specific Characteristics for Aircraft Systems
	Score Definition and Evaluation Structure

	Design and Implementation
	Representation Method
	Relevant Threats, Vulnerabilities, and Attacks
	Infrastructure
	Workbench configuration
	Simics configuration

	Evaluation
	E1 – Improper Authentication (CWE-287)
	E2 – Privilege Management (CWE-264/266/269)
	E3 – Malware Protection
	E4 – Buffer Overflow (CWE-121/122/123)
	E5 – String Vulnerabilities (CWE-133/134)
	E6 – Secure Cryptography Algorithm
	E7 – Storage of Sensitive Data
	E8 – Command Injection (CWE-77/78)
	E9 – Integrity check of external Software
	Summary

	Conclusion and Outlook

